Decision Procedures An Algorithmic Point of View

Equalities and Uninterpreted Functions

D. Kroening O. Strichman

ETH/Technion

Version 1.0, 2007

Part III

Equalities and Uninterpreted Functions

Outline

(1) Introduction to Equality Logic

- Definition, complexity
(2) Reducing uninterpreted functions to Equality Logic
(3) Using uninterpreted functions in proofs
(4) Simplifications

Equality Logic

- A Boolean combination of Equalities and Propositions

$$
x_{1}=x_{2} \wedge\left(x_{2}=x_{3} \vee \neg\left(\left(x_{1}=x_{3}\right) \wedge b \wedge x_{1}=2\right)\right)
$$

- We always push negations inside (NNF):

$$
x_{1}=x_{2} \wedge\left(x_{2}=x_{3} \vee\left(\left(x_{1} \neq x_{3}\right) \wedge \neg b \wedge x_{1} \neq 2\right)\right)
$$

Syntax of Equality Logic

$$
\begin{array}{lll}
\text { formula } & : & \text { formula } \vee \text { formula } \\
& \neg \text { formula } \\
& \text { atom } \\
& \\
\text { atom } & : \text { term-variable }=\text { term-variable } \\
& \text { term-variable }=\text { constant } \\
& \text { Boolean-variable }
\end{array}
$$

- The term-variables are defined over some (possible infinite) domain. The constants are from the same domain.
- The set of Boolean variables is always separate from the set of term variables

Expressiveness and complexity

- Allows more natural description of systems, although technically it is as expressible as Propositional Logic.
- Obviously NP-hard.
- In fact, it is in NP, and hence NP-complete, for reasons we shall see later.

$$
\begin{array}{lcl}
\text { formula } & : \text { formula } \vee \text { formula } \\
& \left\lvert\, \begin{array}{l}
\text { formula }
\end{array}\right. \\
& \text { atom } \\
\text { atom } & : \text { term }=\text { term } \\
& \mid \text { Boolean-variable } \\
\text { term } & : \text { term-variable } \\
& \text { function (list of terms })
\end{array}
$$

The term-variables are defined over some (possible infinite) domain. Constants are functions with an empty list of terms.

Uninterpreted Functions

- Every function is a mapping from a domain to a range.
- Example: the '+' function over the naturals \mathbb{N} is a mapping from $\langle\mathbb{N} \times \mathbb{N}\rangle$ to \mathbb{N}.

Uninterpreted Functions

- Suppose we replace '+' by an uninterpreted binary function $f(a, b)$
- Example:

$$
x_{1}+x_{2}=x_{3}+x_{4} \quad \text { is replaced by } \quad f\left(x_{1}, x_{2}\right)=f\left(x_{3}, x_{4}\right)
$$

- We lost the 'semantics' of '+', as f can represent any binary function.
- 'Loosing the semantics' means that f is not restricted by any axioms or rules of inference.
- But f is still a function!

Uninterpreted Functions

- The most general axiom for any function is functional consistency.
- Example: if $x=y$, then $f(x)=f(y)$ for any function f .
- Functional consistency axiom schema:

$$
x_{1}=x_{1}^{\prime} \wedge \ldots \wedge x_{n}=x_{n}^{\prime} \quad \Longrightarrow \quad f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

- Sometimes, functional consistency is all that is needed for a proof.

Example: Circuit Transformations

- Circuits consist of combinational gates and latches (registers)

Example: Circuit Transformations

- Circuits consist of combinational gates and latches (registers)

- The combinational gates can be modeled using functions
- The latches can be modeled with variables

$$
\begin{aligned}
f(x, y) & :=x \vee y \\
R_{1}^{\prime} & =f\left(R_{1}, I\right)
\end{aligned}
$$

Example: Circuit Transformations

- A pipeline processes data in stages
- Data is processed in parallel - as in an assembly line
- Formal model:

$$
\begin{aligned}
L_{1} & =f(I) \\
L_{2} & =L_{1} \\
L_{3} & =k\left(g\left(L_{1}\right)\right) \\
L_{4} & =h\left(L_{1}\right) \\
L_{5} & =c\left(L_{2}\right) ? L_{3}: l\left(L_{4}\right)
\end{aligned}
$$

Example: Circuit Transformations

- A pipeline processes data in stages
- Data is processed in parallel - as in an assembly line
- Formal model:

$$
\begin{aligned}
L_{1} & =f(I) \\
L_{2} & =L_{1} \\
L_{3} & =k\left(g\left(L_{1}\right)\right) \\
L_{4} & =h\left(L_{1}\right) \\
L_{5} & =c\left(L_{2}\right) ? L_{3}: l\left(L_{4}\right)
\end{aligned}
$$

Example: Circuit Transformations

- A pipeline processes data in stages
- Data is processed in parallel - as in an assembly line
- Formal model:

$$
\begin{aligned}
L_{1} & =f(I) \\
L_{2} & =L_{1} \\
L_{3} & =k\left(g\left(L_{1}\right)\right) \\
L_{4} & =h\left(L_{1}\right) \\
L_{5} & =c\left(L_{2}\right) ? L_{3}: l\left(L_{4}\right)
\end{aligned}
$$

Example: Circuit Transformations

- A pipeline processes data in stages
- Data is processed in parallel - as in an assembly line
- Formal model:

$$
\begin{aligned}
L_{1} & =f(I) \\
L_{2} & =L_{1} \\
L_{3} & =k\left(g\left(L_{1}\right)\right) \\
L_{4} & =h\left(L_{1}\right) \\
L_{5} & =c\left(L_{2}\right) ? L_{3}: l\left(L_{4}\right)
\end{aligned}
$$

Example: Circuit Transformations

- The maximum clock frequency depends on the longest path between two latches
- Note that the output of g is used as input to k
- We want to speed up the design by postponing k to the third stage

Example: Circuit Transformations

- The maximum clock frequency depends on the longest path between two latches
- Note that the output of g is used as input to k
- We want to speed up the design by postponing k to the third stage
- Also note that the circuit only uses one of L_{3} or L_{4}, never both
\Rightarrow We can remove one of the latches

Example: Circuit Transformations

Example: Circuit Transformations

$$
\begin{array}{ll}
L_{1}=f(I) & L_{1}^{\prime}=f(I) \\
L_{2}=L_{1} & L_{2}^{\prime}=c\left(L_{1}^{\prime}\right) \\
L_{3}=k\left(g\left(L_{1}\right)\right) & L_{3}^{\prime}=c\left(L_{1}^{\prime}\right) ? g\left(L_{1}^{\prime}\right): h\left(L_{1}^{\prime}\right) \\
L_{4}=h\left(L_{1}\right) & L_{5}^{\prime}=L_{2}^{\prime} ? k\left(L_{3}^{\prime}\right): l\left(L_{3}^{\prime}\right) \\
L_{5}=c\left(L_{2}\right) ? L_{3}: l\left(L_{4}\right) &
\end{array}
$$

$$
L_{5} \stackrel{?}{=} L_{5}^{\prime}
$$

Example: Circuit Transformations

$$
\begin{array}{ll}
L_{1}=f(I) & L_{1}^{\prime}=f(I) \\
L_{2}=L_{1} & L_{2}^{\prime}=c\left(L_{1}^{\prime}\right) \\
L_{3}=k\left(g\left(L_{1}\right)\right) & L_{3}^{\prime}=c\left(L_{1}^{\prime}\right) ? g\left(L_{1}^{\prime}\right): h\left(L_{1}^{\prime}\right) \\
L_{4}=h\left(L_{1}\right) & L_{5}^{\prime}=L_{2}^{\prime} ? k\left(L_{3}^{\prime}\right): l\left(L_{3}^{\prime}\right) \\
L_{5}=c\left(L_{2}\right) ? L_{3}: l\left(L_{4}\right) &
\end{array}
$$

$$
L_{5} \stackrel{?}{=} L_{5}^{\prime}
$$

- Equivalence in this case holds regardless of the actual functions
- Conclusion: can be decided using Equality Logic and Uninterpreted Functions

Transforming UFs to Equality Logic using Ackermann's reduction

- Given: a formula $\varphi^{U F}$ with uninterpreted functions
- For each function in $\varphi^{U F}$:

1. Number function instances $\longrightarrow F_{2}\left(F_{1}(x)\right)=0$ (from the inside out)

Transforming UFs to Equality Logic using Ackermann's reduction

- Given: a formula $\varphi^{U F}$ with uninterpreted functions
- For each function in $\varphi^{U F}$:

1. Number function instances (from the inside out)

2. Replace each function in-

$$
\longrightarrow f_{2}=0
$$ stance with a new variable

Transforming UFs to Equality Logic using Ackermann's reduction

- Given: a formula $\varphi^{U F}$ with uninterpreted functions
- For each function in $\varphi^{U F}$:

1. Number function instances (from the inside out)

2. Replace each function in-

$$
\longrightarrow f_{2}=0
$$ stance with a new variable

3. Add functional consistency

$$
\longrightarrow \quad \begin{aligned}
& \left.\left.\longrightarrow f_{1}\right) \longrightarrow\left(f_{2}=f_{1}\right)\right) \\
& \quad(x=0
\end{aligned}
$$ constraint to $\varphi^{U F}$ for every pair of instances of the same function.

Ackermann's reduction: Example

Suppose we want to check

$$
x_{1} \neq x_{2} \vee F\left(x_{1}\right)=F\left(x_{2}\right) \vee F\left(x_{1}\right) \neq F\left(x_{3}\right)
$$

for validity.
(1) First number the function instances:

$$
x_{1} \neq x_{2} \vee F_{1}\left(x_{1}\right)=F_{2}\left(x_{2}\right) \vee F_{1}\left(x_{1}\right) \neq F_{3}\left(x_{3}\right)
$$

Ackermann's reduction: Example

Suppose we want to check

$$
x_{1} \neq x_{2} \vee F\left(x_{1}\right)=F\left(x_{2}\right) \vee F\left(x_{1}\right) \neq F\left(x_{3}\right)
$$

for validity.
(1) First number the function instances:

$$
x_{1} \neq x_{2} \vee F_{1}\left(x_{1}\right)=F_{2}\left(x_{2}\right) \vee F_{1}\left(x_{1}\right) \neq F_{3}\left(x_{3}\right)
$$

(2) Replace each function with a new variable:

$$
x_{1} \neq x_{2} \vee f_{1}=f_{2} \vee f_{1} \neq f_{3}
$$

Ackermann's reduction: Example

Suppose we want to check

$$
x_{1} \neq x_{2} \vee F\left(x_{1}\right)=F\left(x_{2}\right) \vee F\left(x_{1}\right) \neq F\left(x_{3}\right)
$$

for validity.
(1) First number the function instances:

$$
x_{1} \neq x_{2} \vee F_{1}\left(x_{1}\right)=F_{2}\left(x_{2}\right) \vee F_{1}\left(x_{1}\right) \neq F_{3}\left(x_{3}\right)
$$

(2) Replace each function with a new variable:

$$
x_{1} \neq x_{2} \vee f_{1}=f_{2} \vee f_{1} \neq f_{3}
$$

(3) Add functional consistency constraints:

$$
\begin{aligned}
& \left(\begin{array}{l}
\left(x_{1}=x_{2} \rightarrow f_{1}=f_{2}\right) \\
\left(x_{1}=x_{3} \rightarrow f_{1}=f_{3}\right) \\
\wedge \\
\left(x_{2}=x_{3} \rightarrow f_{2}=f_{3}\right)
\end{array}\right) \rightarrow \\
& \quad\left(\left(x_{1} \neq x_{2}\right) \vee\left(f_{1}=f_{2}\right) \vee\left(f_{1} \neq f_{3}\right)\right)
\end{aligned}
$$

Transforming UFs to Equality Logic using Bryant's reduction

- Given: a formula $\varphi^{U F}$ with uninterpreted functions
- For each function in $\varphi^{U F}$:

1. Number function instances $\longrightarrow F_{1}(a)=F_{2}(b)$ (from the inside out)

Transforming UFs to Equality Logic using Bryant's reduction

- Given: a formula $\varphi^{U F}$ with uninterpreted functions
- For each function in $\varphi^{U F}$:

1. Number function instances $\longrightarrow F_{1}(a)=F_{2}(b)$ (from the inside out)
2. Replace each function instance $\longrightarrow F_{1}^{*}=F_{2}^{*}$ F_{i} with an expression F_{i}^{*}

Transforming UFs to Equality Logic using Bryant's reduction

- Given: a formula $\varphi^{U F}$ with uninterpreted functions
- For each function in $\varphi^{U F}$:

1. Number function instances $\longrightarrow F_{1}(a)=F_{2}(b)$ (from the inside out)
2. Replace each function instance
$\longrightarrow F_{1}^{*}=F_{2}^{*}$ F_{i} with an expression F_{i}^{*}

$$
F_{i}^{*}:=\left(\begin{array}{ccc}
\text { case } & x_{1}=x_{i} & : f_{1} \\
& x_{2}=x_{i} & : f_{2} \\
\vdots \\
& \\
& x_{i-1}=x_{i}: f_{i-1} \\
\text { true } & : f_{i}
\end{array}\right) \longrightarrow f_{1}=\left(\begin{array}{cc}
\text { case } & a=b: f_{1} \\
& \text { true }: f_{2}
\end{array}\right)
$$

Example of Bryant's reduction

- Original formula:

$$
a=b \rightarrow F(G(a)=F(G(b))
$$

Example of Bryant's reduction

- Original formula:

$$
a=b \rightarrow F(G(a)=F(G(b))
$$

- Number the instances:

$$
a=b \rightarrow F_{1}\left(G_{1}(a)=F_{2}\left(G_{2}(b)\right)\right.
$$

Example of Bryant's reduction

- Original formula:

$$
a=b \rightarrow F(G(a)=F(G(b))
$$

- Number the instances:

$$
a=b \rightarrow F_{1}\left(G_{1}(a)=F_{2}\left(G_{2}(b)\right)\right.
$$

- Replace each function application with an expression:

$$
a=b \rightarrow F_{1}^{*}=F_{2}^{*}
$$

where

$$
\begin{aligned}
F_{1}^{*} & =f_{1} \\
F_{2}^{*} & =\left(\begin{array}{lll}
\text { case } & G_{1}^{*}=G_{2}^{*} & : f_{1} \\
& \text { true } & : f_{2}
\end{array}\right) \\
G_{1}^{*} & =g_{1} \\
G_{2}^{*} & =\left(\begin{array}{lll}
\text { case } & a=b & : g_{1} \\
& \text { true } & : g_{2}
\end{array}\right)
\end{aligned}
$$

- Uninterpreted functions give us the ability to represent an abstract view of functions.
- It over-approximates the concrete system.
$1+1=1$ is a contradiction
But
$F(1,1)=1$ is satisfiable!

Using uninterpreted functions in proofs

- Uninterpreted functions give us the ability to represent an abstract view of functions.
- It over-approximates the concrete system. $1+1=1$ is a contradiction
But
$F(1,1)=1$ is satisfiable!
- Conclusion: unless we are careful, we can give wrong answers, and this way, loose soundness.

Using uninterpreted functions in proofs

- In general, a sound but incomplete method is more useful than an unsound but complete method.
- A sound but incomplete algorithm for deciding a formula with uninterpreted functions $\varphi^{U F}$:
(1) Transform it into Equality Logic formula φ^{E}
(2) If φ^{E} is unsatisfiable, return 'Unsatisfiable'
(3) Else return 'Don't know'

Using uninterpreted functions in proofs

- Question \#1: is this useful?

Using uninterpreted functions in proofs

- Question \#1: is this useful?
- Question \#2: can it be made complete in some cases?
- Question \#1: is this useful?
- Question \#2: can it be made complete in some cases?
- When the abstract view is sufficient for the proof, it enables (or at least simplifies) a mechanical proof.
- Question \#1: is this useful?
- Question \#2: can it be made complete in some cases?
- When the abstract view is sufficient for the proof, it enables (or at least simplifies) a mechanical proof.
- So when is the abstract view sufficient?

Using uninterpreted functions in proofs

- (common) Proving equivalence between:
- Two versions of a hardware design (one with and one without a pipeline)
- Source and target of a compiler ("Translation Validation")

Using uninterpreted functions in proofs

- (common) Proving equivalence between:
- Two versions of a hardware design (one with and one without a pipeline)
- Source and target of a compiler ("Translation Validation")
- (rare) Proving properties that do not rely on the exact functionality of some of the functions

Example: Translation Validation

- Assume the source program has the statement

$$
z=\left(x_{1}+y_{1}\right) \cdot\left(x_{2}+y_{2}\right) ;
$$

which the compiler turned into:

$$
\begin{aligned}
& u_{1}=x_{1}+y_{1} \\
& u_{2}=x_{2}+y_{2} \\
& z=u_{1} \cdot u_{2}
\end{aligned}
$$

Example: Translation Validation

- Assume the source program has the statement

$$
z=\left(x_{1}+y_{1}\right) \cdot\left(x_{2}+y_{2}\right)
$$

which the compiler turned into:

$$
\begin{aligned}
& u_{1}=x_{1}+y_{1} \\
& u_{2}=x_{2}+y_{2} \\
& z=u_{1} \cdot u_{2}
\end{aligned}
$$

- We need to prove that:

$$
\begin{aligned}
& \left(u_{1}=x_{1}+y_{1} \quad \wedge \quad u_{2}=x_{2}+y_{2} \quad \wedge \quad z=u_{1} \cdot u_{2}\right) \\
\longrightarrow & \left(z=\left(x_{1}+y_{1}\right) \cdot\left(x_{2}+y_{2}\right)\right)
\end{aligned}
$$

Example: Translation Validation

- Claim: $\varphi^{U F}$ is valid
- We will prove this by reducing it to an Equality Logic formula

$$
\begin{aligned}
\varphi^{E}= & \left(\begin{array}{lll}
\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right. & \longrightarrow & \left.f_{1}=f_{2}\right) \\
\left(u_{1}=f_{1} \wedge u_{2}=f_{2}\right. & \longrightarrow & \left.g_{1}=g_{2}\right)
\end{array}\right) \longrightarrow \\
& \left(\left(u_{1}=f_{1} \wedge u_{2}=f_{2} \wedge z=g_{1}\right) \quad \longrightarrow \quad z=g_{2}\right)
\end{aligned}
$$

Uninterpreted functions: usability

- Good: each function on the left can be mapped to a function on the right with equivalent arguments

Uninterpreted functions: usability

- Good: each function on the left can be mapped to a function on the right with equivalent arguments
- Bad: almost all other cases
- Example:
$\frac{\text { Left }}{x+x} \quad \frac{\text { Right }}{2 x}$

Uninterpreted functions: usability

- This is easy to prove:

$$
\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right) \longrightarrow\left(x_{1}+y_{1}=x_{2}+y_{2}\right)
$$

Uninterpreted functions: usability

- This is easy to prove:

$$
\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right) \longrightarrow\left(x_{1}+y_{1}=x_{2}+y_{2}\right)
$$

- This requires commutativity:

$$
\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right) \longrightarrow\left(x_{1}+y_{1}=y_{2}+x_{2}\right)
$$

Uninterpreted functions: usability

- This is easy to prove:

$$
\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right) \longrightarrow\left(x_{1}+y_{1}=x_{2}+y_{2}\right)
$$

- This requires commutativity:

$$
\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right) \longrightarrow\left(x_{1}+y_{1}=y_{2}+x_{2}\right)
$$

- Fix by adding:

$$
\left(x_{1}+y_{1}=y_{1}+x_{1}\right) \wedge\left(x_{2}+y_{2}=y_{2}+x_{2}\right)
$$

Uninterpreted functions: usability

- This is easy to prove:

$$
\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right) \longrightarrow\left(x_{1}+y_{1}=x_{2}+y_{2}\right)
$$

- This requires commutativity:

$$
\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right) \longrightarrow\left(x_{1}+y_{1}=y_{2}+x_{2}\right)
$$

- Fix by adding:

$$
\left(x_{1}+y_{1}=y_{1}+x_{1}\right) \wedge\left(x_{2}+y_{2}=y_{2}+x_{2}\right)
$$

- What about other cases?

Use more rewriting rules!

Example: equivalence of C programs (1/4)

```
int power3(int in) {
out = in;
    for(i=0; i<2; i++)
        out = out * in;
    return out;
}
```

```
int power3_new(int in) {
```

int power3_new(int in) {
out = (in*in)*in;
out = (in*in)*in;
return out;
return out;
}

```
}
```

- These two functions return the same value regardless if it is '*' or any other function.
- Conclusion: we can prove equivalence by replacing ' ${ }^{*}$ ' with an uninterpreted function

From programs to equations

- But first we need to know how to turn programs into equations.
- There are several options - we will see static single assignment for bounded programs.

Static Single Assignment (SSA) form

- \rightarrow see compiler class
- Idea: Rename variables such that each variable is assigned exactly once

Example: \begin{tabular}{l}
$\mathrm{x}=\mathrm{x}+\mathrm{y} ;$

$\mathrm{x}=\mathrm{x} * 2 ;$

$\mathrm{a}[\mathrm{i}]=100 ;$

$\quad \square \quad$

$\mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{y}_{0} ;$

$\mathrm{x}_{2}=\mathrm{x}_{1} * 2 ;$

$\mathrm{a}_{1}\left[\mathrm{i}_{0}\right]=100 ;$
\end{tabular}

Static Single Assignment (SSA) form

- \rightarrow see compiler class
- Idea: Rename variables such that each variable is assigned exactly once

Example: \begin{tabular}{l}
$\mathrm{x}=\mathrm{x}+\mathrm{y} ;$

$\mathrm{x}=\mathrm{x} * 2 ;$

$\mathrm{a}[\mathrm{i}]=100 ;$

$\quad \square \quad$

$\mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{y}_{0} ;$

$\mathrm{x}_{2}=\mathrm{x}_{1} * 2 ;$

$a_{1}\left[\mathrm{i}_{0}\right]=100 ;$
\end{tabular}

- Read assignments as equalities
- Generate constraints by simply conjoining these equalities

$$
\text { Example: } \begin{aligned}
& \begin{array}{l}
\mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{y}_{0} ; \\
\mathrm{x}_{2}=\mathrm{x}_{1} * 2 ; \\
\mathrm{a}_{1}\left[\mathrm{i}_{0}\right]=100 ;
\end{array} \square \begin{array}{l}
x_{1}=x_{0}+y_{0} \\
x_{2}=x_{1} * 2 \\
a_{1}\left[i_{0}\right]=100
\end{array} \wedge
\end{aligned}
$$

SSA for bounded programs

What about if? Branches are handled using ϕ-nodes.

$$
\begin{aligned}
& \text { int main() }\{ \\
& \text { int } x, y, z ; \\
& y=8 ; \\
& \text { if(x) } \\
& y--; \\
& \text { else } \\
& y++; \\
& \text { z=y+1; } \\
& \}
\end{aligned}
$$

SSA for bounded programs

What about if? Branches are handled using ϕ-nodes.

int main() \{	int main() \{
int $\mathrm{x}, \mathrm{y}, \mathrm{z}$;	int $\mathrm{x}, \mathrm{y}, \mathrm{z}$;
$y=8$;	$\mathrm{y}_{1}=8$;
if (x)	if (x_{0})
y--;	$\begin{aligned} & \mathrm{y}_{2}=\mathrm{y}_{1}-1 \text {; } \\ & \text { else } \end{aligned}$
y^{++};	$\mathrm{y}_{3}=\mathrm{y}_{1}+1$;
	$\mathrm{y}_{4}=\phi\left(\mathrm{y}_{2}, \mathrm{y}_{3}\right)$;
$\}^{z=y+1 ;}$	$\mathrm{z}_{1}=\mathrm{y}_{4}+1$;

SSA for bounded programs

What about if? Branches are handled using ϕ-nodes.

SSA for bounded programs

What about loops?

\rightarrow We unwind them!

```
void f(...) {
    while(cond) {
        BODY;
    }
    Remainder;
}
```


SSA for bounded programs

What about loops?

\rightarrow We unwind them!

SSA for bounded programs

What about loops?

\rightarrow We unwind them!

SSA for bounded programs

Some caveats:

- Unwind how many times?
- Must preserve locality of variables declared inside loop

SSA for bounded programs

Some caveats:

- Unwind how many times?
- Must preserve locality of variables declared inside loop

There is a tool available that does this

- CBMC - C Bounded Model Checker
- Bound is verified using unwinding assertions
- Used frequently for embedded software \longrightarrow Bound is a run-time guarantee
- Integrated into Eclipse
- Decision problem can be exported

SSA for bounded programs: CBMC

Example: equivalence of C programs (2/4)

```
int power3(int in) {
out = in;
    for(i=0; i<2; i++)
        out = out * in;
return out;
}
```

```
int power3_new(int in) {
```

int power3_new(int in) {
out = (in*in)*in;
out = (in*in)*in;
return out;
return out;
}

```
}
```


Example: equivalence of C programs (2/4)

```
int power3(int in) {
out = in;
int power3_new(int in) {
    out = (in*in)*in;
    return out;
}
return out;
}
```

Static single assignment (SSA) form:

$$
\begin{array}{ll}
\text { out }_{1} & =\text { in } \wedge \\
\text { out }_{2} & =\text { out }_{1} * \text { in } \wedge \\
\text { out }_{3} & =\text { out }_{2} * \text { in }
\end{array} \quad \text { out }_{1}^{\prime}=(\text { in } * i n) * i n
$$

Prove that both functions return the same value:

$$
o u t_{3}=o u t_{1}^{\prime}
$$

Example: equivalence of C programs (3/4)

Static single assignment (SSA) form:

$$
\begin{aligned}
& \text { out }_{1}=\text { in } \wedge \\
& \text { out }_{2}=\text { out }_{1} * i n \\
& \text { out }_{3}=\text { out }_{2} * i n
\end{aligned}
$$

$$
\text { out }_{2}=\text { out }_{1} * \text { in } \wedge \quad \text { out }_{1}^{\prime}=(\text { in } * i n) * i n
$$

With uninterpreted functions:

$$
\begin{array}{ll}
\text { out }_{1} & =\text { in } \wedge \\
\text { out }_{2} & =F\left(\text { out }_{1}, \text { in }\right) \wedge \\
\text { out }_{3} & =F\left(\text { out }_{2}, \text { in }\right)
\end{array} \quad \text { out }_{1}^{\prime}=F(F(\text { in }, \text { in }), \text { in })
$$

Example: equivalence of C programs (3/4)

Static single assignment (SSA) form:

$$
\begin{aligned}
& \text { out }_{1}=\text { in } \wedge \\
& \text { out }_{2}=\text { out }_{1} * i n \\
& \text { out }_{3}=\text { out }_{2} * i n
\end{aligned}
$$

$$
\text { out }_{2}=\text { out }_{1} * \text { in } \wedge \quad \text { out }_{1}^{\prime}=(\text { in } * \text { in }) * \text { in }
$$

With uninterpreted functions:

$$
\begin{array}{ll}
\text { out }_{1} & =\text { in } \wedge \\
\text { out }_{2} & =F\left(\text { out }_{1}, \text { in }\right) \wedge \\
\text { out }_{3} & =F\left(\text { out }_{2}, \text { in }\right)
\end{array} \quad \text { out }_{1}^{\prime}=F(F(\text { in }, \text { in }), \text { in })
$$

With numbered uninterpreted functions:

$$
\begin{array}{ll}
\text { out }_{1}=\text { in } \wedge \\
\text { out }_{2} & =F_{1}\left(\text { out }_{1}, \text { in }\right) \wedge \\
\text { out }_{3} & =F_{2}\left(\text { out }_{2}, \text { in }\right)
\end{array} \quad \text { out }_{1}^{\prime}=F_{4}\left(F_{3}(\text { in }, \text { in }), \text { in }\right)
$$

Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:

$$
\begin{aligned}
& \text { out }_{1}=\text { in } \wedge \\
& \text { out }_{2}=F_{1}\left(\text { out }_{1}, \text { in }\right) \wedge \\
& \text { out }_{3}=F_{2}\left(\text { out }_{2}, \text { in }\right)
\end{aligned}
$$

$$
\text { out }_{1}^{\prime}=F_{4}\left(F_{3}(i n, i n), i n\right)
$$

Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:

$$
\begin{aligned}
& \text { out }_{1}=\text { in } \wedge \\
& \text { out }_{2}=F_{1}\left(\text { out }_{1}, \text { in }\right) \\
& \text { out }_{3}=F_{2}\left(\text { out }_{2}, \text { in }\right)
\end{aligned}
$$

$$
\text { out }_{2}=F_{1}\left(\text { out }_{1}, \text { in }\right) \wedge \quad \text { out }_{1}^{\prime}=F_{4}\left(F_{3}(\text { in }, \text { in }), \text { in }\right)
$$

Ackermann's reduction:

$$
\begin{aligned}
& \text { out }_{1}=\text { in } \wedge \\
& \text { out }_{2}=f_{1} \wedge \\
& \text { out }_{3}=f_{2}
\end{aligned}
$$

$$
\varphi_{a}^{E}: \quad \text { out }_{2}=f_{1} \wedge \quad \varphi_{b}^{E}: \text { out }_{1}^{\prime}=f_{4}
$$

Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:

$$
\begin{aligned}
& \text { out }_{1}=\text { in } \wedge \\
& \text { out }_{2}=F_{1}\left(\text { out }_{1}, \text { in }\right) \\
& \text { out }_{3}=F_{2}\left(\text { out }_{2}, \text { in }\right)
\end{aligned}
$$

$$
\text { out }_{2}=F_{1}\left(\text { out }_{1}, \text { in }\right) \wedge \quad \text { out }_{1}^{\prime}=F_{4}\left(F_{3}(\text { in }, \text { in }), \text { in }\right)
$$

Ackermann's reduction:

$$
\text { out }_{1}=i n \wedge
$$

$$
\varphi_{a}^{E}: \quad \text { out }_{2}=f_{1} \wedge \quad \varphi_{b}^{E}: \text { out }_{1}^{\prime}=f_{4}
$$

The verification condition:

$$
\left[\left(\begin{array}{lll}
\left(\text { out }_{1}=o u t_{2} \rightarrow f_{1}=f_{2}\right) & \wedge \\
\left(\text { out }_{1}=\right.\text { in } & \left.\rightarrow f_{1}=f_{3}\right) & \wedge \\
\left(\text { out }_{1}=f_{3}\right. & \left.\rightarrow f_{1}=f_{4}\right) & \wedge \\
\left(\text { out }_{2}=i n\right. & \left.\rightarrow f_{2}=f_{3}\right) & \wedge \\
\left(\text { out }_{2}=f_{3}\right. & \left.\rightarrow f_{2}=f_{3}\right) & \wedge \\
\left(\text { in }=f_{3}\right. & \left.\rightarrow f_{3}=f_{4}\right) &
\end{array}\right) \wedge \varphi_{a}^{E} \wedge \varphi_{b}^{E}\right] \rightarrow \text { out }_{3}=\text { out }_{1}^{\prime}
$$

Uninterpreted functions: simplifications

- Let n be the number of instances of $F()$
- Both reduction schemes require $O\left(n^{2}\right)$ comparisons
- This can be the bottleneck of the verification effort

Uninterpreted functions: simplifications

- Let n be the number of instances of $F()$
- Both reduction schemes require $O\left(n^{2}\right)$ comparisons
- This can be the bottleneck of the verification effort

- Solution: try to guess the pairing of functions
- Still sound: wrong guess can only make a valid formula invalid

Simplifications (1)

- Given $x_{1}=x_{1}^{\prime}, x_{2}=x_{2}^{\prime}, x_{3}=x_{3}^{\prime}$, prove $\models o_{1}=o_{2}$.

$$
\begin{aligned}
& o_{1}=(\underbrace{x_{1}+\left(a \cdot x_{2}\right)}_{f_{1}}) \wedge a=\underbrace{x_{3}+5}_{f_{2}} \\
& o_{2}=(\underbrace{x_{1}^{\prime}+\left(b \cdot x_{2}^{\prime}\right)}_{f_{3}}) \wedge b=\underbrace{x_{3}^{\prime}+5}_{f_{4}} \quad \text { Left }
\end{aligned}
$$

- 4 function instances $\rightarrow 6$ comparisons

Simplifications (1)

- Given $x_{1}=x_{1}^{\prime}, x_{2}=x_{2}^{\prime}, x_{3}=x_{3}^{\prime}$, prove $\models o_{1}=o_{2}$.

$$
\begin{aligned}
& o_{1}=(\underbrace{x_{1}+\left(a \cdot x_{2}\right)}_{f_{1}}) \wedge a=\underbrace{x_{3}+5}_{f_{2}} \\
& o_{2}=(\underbrace{x_{1}^{\prime}+\left(b \cdot x_{2}^{\prime}\right)}_{f_{3}}) \wedge b=\underbrace{x_{3}^{\prime}+5}_{f_{4}} \quad \text { Left }
\end{aligned}
$$

- 4 function instances $\rightarrow 6$ comparisons
- Guess: validity does not rely on $f_{1}=f_{2}$ or on $f_{3}=f_{4}$
- Idea: only enforce functional consistency of pairs (Left,Right).

Simplifications (2)

$$
\begin{aligned}
& o_{1}=(\underbrace{x_{1}+\left(a \cdot x_{2}\right)}_{f_{1}}) \wedge a=\underbrace{x_{3}+5}_{f_{2}} \quad \text { Left } \\
& o_{2}=(\underbrace{\left(x_{1}^{\prime}+\left(b \cdot x_{2}^{\prime}\right)\right.}_{f_{3}}) \wedge b=\underbrace{x_{3}^{\prime}+5}_{f_{4}} \quad \text { Right }
\end{aligned}
$$

- Down to 4 comparisons!

Simplifications (2)

$$
\begin{aligned}
& o_{1}=(\underbrace{x_{1}+\left(a \cdot x_{2}\right)}_{f_{1}}) \wedge a=\underbrace{x_{3}+5}_{f_{2}} \quad \text { Left } \\
& o_{2}=(\underbrace{\left(x_{1}^{\prime}+\left(b \cdot x_{2}^{\prime}\right)\right.}_{f_{3}}) \wedge b=\underbrace{x_{3}^{\prime}+5}_{f_{4}} \quad \text { Right }
\end{aligned}
$$

- Down to 4 comparisons!
- Another guess: equivalence only depends on $f_{1}=f_{3}$ and $f_{2}=f_{4}$
- Pattern matching may help here

Simplifications (3)

$$
\begin{aligned}
& o_{1}=(\underbrace{x_{1}+\left(a \cdot x_{2}\right)}_{f_{1}}) \wedge a=\underbrace{x_{3}+5}_{f_{2}} \quad \text { Left } \\
& o_{2}=(\underbrace{x_{1}^{\prime}+\left(b \cdot x_{2}^{\prime}\right)}_{f_{3}}) \wedge b=\underbrace{x_{3}^{\prime}+5}_{f_{4}} \quad \text { Right }
\end{aligned}
$$

Match according to patterns ('signatures')

f_{1}, f_{3}

f_{2}, f_{4}

Simplifications (4)

$$
\begin{aligned}
& o_{1}=(\underbrace{x_{1}+\left(a \cdot x_{2}\right)}_{f_{1}}) \wedge a=\underbrace{x_{3}+5}_{f_{2}} \\
& o_{2}=(\underbrace{x_{1}^{\prime}+\left(b \cdot x_{2}^{\prime}\right)}_{f_{3}}) \wedge b=\underbrace{x_{3}^{\prime}+5}_{f_{4}} \quad \text { Left } \\
& \text { Right } \\
& \text { n the } \\
& , b)
\end{aligned}
$$

Substitute intermediate variables (in the example: a, b)

Simplifications (4)

$$
\begin{aligned}
& o_{1}=(\underbrace{x_{1}+\left(a \cdot x_{2}\right)}_{f_{1}}) \wedge a=\underbrace{x_{3}+5}_{f_{2}} \\
& o_{2}=(\underbrace{x_{1}^{\prime}+\left(b \cdot x_{2}^{\prime}\right)}_{f_{3}}) \wedge b=\underbrace{x_{3}^{\prime}+5}_{f_{4}}
\end{aligned}
$$

Substitute intermediate variables (in the example: a, b)

The SSA example revisited (1)

With numbered uninterpreted functions:

$$
\begin{aligned}
& \text { out }_{1}=\text { in } \wedge \\
& \text { out }_{2}=F_{1}\left(\text { out }_{1}, \text { in }\right) \wedge \\
& \text { out }_{3}=F_{2}\left(\text { out }_{2}, \text { in }\right)
\end{aligned}
$$

$$
\text { out }_{1}^{\prime}=F_{4}\left(F_{3}(i n, i n), i n\right)
$$

The SSA example revisited (1)

With numbered uninterpreted functions:

$$
\begin{aligned}
& \text { out }_{1}=\text { in } \wedge \\
& \text { out }_{2}=F_{1}\left(\text { out }_{1}, \text { in }\right) \wedge \\
& \text { out }_{3}=F_{2}\left(\text { out }_{2}, \text { in }\right)
\end{aligned}
$$

$$
o u t_{1}^{\prime}=F_{4}\left(F_{3}(i n, i n), i n\right)
$$

Map F_{2} to F_{4} :

The SSA example revisited (2)

With numbered uninterpreted functions:

$$
\begin{aligned}
& \text { out }_{1}=\text { in } \wedge \\
& \text { out }_{2}=F_{1}\left(\text { out }_{1}, \text { in }\right) \wedge \\
& \text { out }_{3}=F_{2}\left(\text { out }_{2}, \text { in }\right)
\end{aligned} \quad \text { out }{ }_{1}^{\prime}=F_{4}\left(F_{3}(\text { in }, \text { in }), \text { in }\right)
$$

Ackermann's reduction:

$$
\varphi_{a}^{E}: \begin{aligned}
& \text { out }_{1}=\text { in } \wedge \\
& \text { out }_{2}=f_{1} \wedge \\
& \text { out }_{3}=f_{2}
\end{aligned} \quad \varphi_{b}^{E}: \text { out }_{1}^{\prime}=f_{4}
$$

The verification condition has shrunk:

$$
\left.\left[\binom{\left(\text { out }_{1}=\text { in } \longrightarrow f_{1}=f_{3}\right)}{\left(\text { out }_{2}=f_{3} \longrightarrow f_{2}=f_{4}\right)} \wedge\right) \wedge \varphi_{a}^{E} \wedge \varphi_{b}^{E}\right] \longrightarrow \text { out }_{3}=\text { out }_{1}^{\prime}
$$

Same example with Bryant's reduction

With numbered uninterpreted functions:

$$
\begin{aligned}
& \text { out }_{1}=\text { in } \wedge \\
& \text { out }_{2}=F_{1}\left(\text { out }_{1}, \text { in }\right) \wedge \\
& \text { out }_{3}=F_{2}\left(\text { out }_{2}, \text { in }\right)
\end{aligned} \quad \text { out }_{1}^{\prime}=F_{4}\left(F_{3}(\text { in }, \text { in }), \text { in }\right)
$$

Bryant's reduction:

$$
\varphi_{a}^{E}: \begin{array}{ll}
\text { out }_{1}=\text { in } \wedge & \text { out }_{2}=f_{1} \wedge \\
\text { out }_{3}=f_{2}
\end{array} \quad \varphi_{b}^{E}: \text { out }_{1}^{\prime}=.
$$

The verification condition:

$$
\left(\varphi_{a}^{E} \wedge \varphi_{b}^{E}\right) \longrightarrow \text { out }_{3}=\text { out }_{1}^{\prime}
$$

So is Equality Logic with UFs interesting?

(1) It is expressible enough to state something interesting.
(2) It is decidable and more efficiently solvable than richer logics, for example in which some functions are interpreted.
(3) Models which rely on infinite-type variables are
 expressed more naturally in this logic in comparison with Propositional Logic.

