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Equality Logic

A Boolean combination of Equalities and Propositions

x1 = x2 ∧ (x2 = x3 ∨ ¬((x1 = x3) ∧ b ∧ x1 = 2))

We always push negations inside (NNF):

x1 = x2 ∧ (x2 = x3 ∨ ((x1 6= x3) ∧ ¬b ∧ x1 6= 2))
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Syntax of Equality Logic

formula : formula ∨ formula
| ¬formula
| atom

atom : term-variable = term-variable
| term-variable = constant
| Boolean-variable

The term-variables are defined over some (possible infinite) domain.
The constants are from the same domain.

The set of Boolean variables is always separate from the set of term
variables
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Expressiveness and complexity

Allows more natural description of systems, although technically it is
as expressible as Propositional Logic.

Obviously NP-hard.

In fact, it is in NP, and hence NP-complete, for reasons we shall see
later.
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Equality logic with uninterpreted functions

formula : formula ∨ formula
| ¬formula
| atom

atom : term = term
| Boolean-variable

term : term-variable
| function ( list of terms )

The term-variables are defined over some (possible infinite) domain.
Constants are functions with an empty list of terms.
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Uninterpreted Functions

Every function is a mapping from a domain to a range.

Example: the ’+’ function over the naturals N is a mapping from
〈N × N〉 to N.
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Uninterpreted Functions

Suppose we replace ’+’ by an uninterpreted binary function f(a, b)
Example:

x1 + x2 = x3 + x4 is replaced by f(x1, x2) = f(x3, x4)

We lost the ’semantics’ of ’+’, as f can represent any binary function.

’Loosing the semantics’ means that f is not restricted by any axioms
or rules of inference.

But f is still a function!
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Uninterpreted Functions

The most general axiom for any function is functional consistency.

Example: if x = y, then f(x) = f(y) for any function f.

Functional consistency axiom schema:

x1 = x′
1 ∧ . . . ∧ xn = x′

n =⇒ f(x1, . . . , xn) = f(x′
1, . . . , x

′
n)

Sometimes, functional consistency is all that is needed for a proof.
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Example: Circuit Transformations

Circuits consist of
combinational gates and
latches (registers)

R1

I

Latch

Combi-
national
part

The combinational gates
can be modeled using
functions

The latches can be
modeled with variables

f(x, y) := x ∨ y

R′
1 = f(R1, I)
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Example: Circuit Transformations
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L1, . . . , L5: latches (registers)

� C: a predicate over bit-vectors

� a multiplexer (case-split)
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Example: Circuit Transformations

Stage 1

Stage 2

Stage 3

1 0

L5
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L3 L4

in

C D

A pipeline processes data in stages

Data is processed in parallel – as in an
assembly line

Formal model:

L1 = f(I)
L2 = L1

L3 = k(g(L1))
L4 = h(L1)
L5 = c(L2) ?L3 : l(L4)
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Example: Circuit Transformations
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C D

The maximum clock frequency depends
on the longest path between two latches

Note that the output of g is used as input
to k

We want to speed up the design by
postponing k to the third stage

Also note that the circuit only uses one of
L3 or L4, never both

⇒ We can remove one of the latches
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Example: Circuit Transformations
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Example: Circuit Transformations

L1 = f(I)
L2 = L1

L3 = k(g(L1))
L4 = h(L1)
L5 = c(L2) ?L3 : l(L4)

L′
1 = f(I)

L′
2 = c(L′

1)
L′

3 = c(L′
1) ? g(L′

1) : h(L′
1)

L′
5 = L′

2 ? k(L′
3) : l(L′

3)

L5
?
= L′

5

Equivalence in this case holds regardless of the actual functions

Conclusion: can be decided using Equality Logic and Uninterpreted
Functions
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Transforming UFs to Equality Logic using Ackermann’s reduction

Given: a formula ϕUF with uninterpreted functions

For each function in ϕUF :

1. Number function instances
(from the inside out)

- F2( F1(x) ) = 0F2(

f1︷ ︸︸ ︷
F1(x) )︸ ︷︷ ︸
f2

= 0

2. Replace each function in-
stance with a new variable

- f2 = 0

3. Add functional consistency
constraint to ϕUF for every
pair of instances of the same
function.

- ((x = f1) −→ (f2 = f1))
−→ f2 = 0
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Ackermann’s reduction: Example

Suppose we want to check

x1 6= x2 ∨ F (x1) = F (x2) ∨ F (x1) 6= F (x3)

for validity.

1 First number the function instances:

x1 6= x2 ∨ F1(x1) = F2(x2) ∨ F1(x1) 6= F3(x3)

2 Replace each function with a new variable:

x1 6= x2 ∨ f1 = f2 ∨ f1 6= f3

3 Add functional consistency constraints: (x1 = x2 → f1 = f2) ∧
(x1 = x3 → f1 = f3) ∧
(x2 = x3 → f2 = f3)

 →

((x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3))
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Transforming UFs to Equality Logic using Bryant’s reduction

Given: a formula ϕUF with uninterpreted functions

For each function in ϕUF :

1. Number function instances
(from the inside out)

- F1(a) = F2(b)

2. Replace each function instance
Fi with an expression F ∗

i

- F ∗
1 = F ∗

2

F ∗
i :=


case x1 = xi : f1

x2 = xi : f2

...
xi−1 = xi: fi−1

true : fi

 - f1 =
(

case a = b: f1

true : f2

)
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Example of Bryant’s reduction

Original formula:

a = b → F (G(a) = F (G(b))

Number the instances:

a = b → F1(G1(a) = F2(G2(b))

Replace each function application with an expression:

a = b → F ∗
1 = F ∗

2

where

F ∗
1 = f1

F ∗
2 =

(
case G∗

1 = G∗
2 : f1

true : f2

)
G∗

1 = g1

G∗
2 =

(
case a = b : g1

true : g2

)
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Using uninterpreted functions in proofs

Uninterpreted functions give us the ability to represent an abstract
view of functions.

It over-approximates the concrete system.
1 + 1 = 1 is a contradiction

But
F (1, 1) = 1 is satisfiable!

Conclusion: unless we are careful, we can give wrong answers, and
this way, loose soundness.
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Using uninterpreted functions in proofs

In general, a sound but incomplete method is more useful than an
unsound but complete method.

A sound but incomplete algorithm for deciding a formula with
uninterpreted functions ϕUF :

1 Transform it into Equality Logic formula ϕE

2 If ϕE is unsatisfiable, return ’Unsatisfiable’
3 Else return ’Don’t know’

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 22 / 48

Using uninterpreted functions in proofs

Question #1: is this useful?

Question #2: can it be made complete in some cases?

When the abstract view is sufficient for the proof, it enables (or at
least simplifies) a mechanical proof.

So when is the abstract view sufficient?
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Using uninterpreted functions in proofs

(common) Proving equivalence between:

Two versions of a hardware design (one with and one without a
pipeline)
Source and target of a compiler (”Translation Validation”)

(rare) Proving properties that do not rely on the exact functionality of
some of the functions
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Example: Translation Validation

Assume the source program has the statement

z = (x1 + y1) · (x2 + y2);

which the compiler turned into:

u1 = x1 + y1;
u2 = x2 + y2;
z = u1 · u2;

We need to prove that:

(u1 = x1 + y1 ∧ u2 = x2 + y2 ∧ z = u1 · u2)
−→ (z = (x1 + y1) · (x2 + y2))
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Example: Translation Validation

Claim: ϕUF is valid

We will prove this by reducing it to an Equality Logic formula

ϕE =
 (x1 = x2 ∧ y1 = y2 −→ f1 = f2) ∧

(u1 = f1 ∧ u2 = f2 −→ g1 = g2)

 −→

((u1 = f1 ∧ u2 = f2 ∧ z = g1) −→ z = g2)
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Uninterpreted functions: usability

Good: each function on the left can be mapped to a function on the
right with equivalent arguments

Bad: almost all other cases

Example:

Left Right

x + x 2x
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Uninterpreted functions: usability

This is easy to prove:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = x2 + y2)

This requires commutativity:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = y2 + x2)

Fix by adding:

(x1 + y1 = y1 + x1) ∧ (x2 + y2 = y2 + x2)

What about other cases?
Use more rewriting rules!
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Example: equivalence of C programs (1/4)

int power3(int in) {
out = in;

for(i=0; i<2; i++)
out = out * in;

return out;
}

int power3 new(int in) {
out = (in*in)*in;
return out;

}

These two functions return the same value regardless if it is ’*’ or any
other function.

Conclusion: we can prove equivalence by replacing ’*’ with an
uninterpreted function
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From programs to equations

But first we need to know how to turn programs into equations.

There are several options – we will see static single assignment for
bounded programs.
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Static Single Assignment (SSA) form

→ see compiler class

Idea: Rename variables such that each variable is assigned exactly
once

Example:

x=x+y;
x=x*2;

a[i]=100;

x1=x0+y0;
x2=x1*2;

a1[i0]=100;

Read assignments as equalities

Generate constraints by simply conjoining these equalities

Example:

x1=x0+y0;
x2=x1*2;

a1[i0]=100;

x1 = x0 + y0 ∧
x2 = x1 ∗ 2 ∧
a1[i0] = 100
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SSA for bounded programs

What about if? Branches are handled using φ-nodes.

int main() {
int x, y, z;

y=8;

if(x)
y--;

else
y++;

z=y+1;
}

int main() {
int x, y, z;

y1=8;

if(x0)
y2=y1-1;

else
y3=y1+1;

y4=φ(y2, y3);

z1=y4+1;
}

y1 = 8 ∧
y2 = y1 − 1 ∧
y3 = y1 + 1 ∧
y4 =
(x0 6=0 ? y2 : y3)∧
z1 = y4 + 1
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SSA for bounded programs

What about loops?
→ We unwind them!

void f(...) {
...
while(cond) {
BODY;

}
...
Remainder;

}

−→

void f(...) {
...
if(cond) {
BODY;
if(cond) {
BODY;
while(cond) {
BODY;

}
}

}
...
Remainder;

}
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SSA for bounded programs

Some caveats:

Unwind how many times?

Must preserve locality of variables declared inside loop

There is a tool available that does this

CBMC – C Bounded Model Checker

Bound is verified using unwinding assertions

Used frequently for embedded software
−→ Bound is a run-time guarantee

Integrated into Eclipse

Decision problem can be exported
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SSA for bounded programs: CBMC
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Example: equivalence of C programs (2/4)

int power3(int in) {
out = in;

for(i=0; i<2; i++)
out = out * in;

return out;
}

int power3 new(int in) {
out = (in*in)*in;
return out;

}

Static single assignment (SSA) form:
out1 = in∧
out2 = out1 ∗ in∧
out3 = out2 ∗ in

out′1 = (in ∗ in) ∗ in

Prove that both functions return the same value:

out3 = out′1
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Example: equivalence of C programs (3/4)

Static single assignment (SSA) form:
out1 = in∧
out2 = out1 ∗ in∧
out3 = out2 ∗ in

out′1 = (in ∗ in) ∗ in

With uninterpreted functions:
out1 = in∧
out2 = F (out1, in)∧
out3 = F (out2, in)

out′1 = F (F (in, in), in)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)
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Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Ackermann’s reduction:

ϕE
a :

out1 = in∧
out2 = f1 ∧
out3 = f2

ϕE
b : out′1 = f4

The verification condition:



(out1 = out2→ f1 = f2) ∧
(out1 = in → f1 = f3) ∧
(out1 = f3 → f1 = f4) ∧
(out2 = in → f2 = f3) ∧
(out2 = f3 → f2 = f3) ∧
(in = f3 → f3 = f4)

 ∧ ϕE
a ∧ ϕE

b

 −→ out3 = out′1
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Uninterpreted functions: simplifications

Let n be the number of instances of F ()
Both reduction schemes require O(n2) comparisons

This can be the bottleneck of the verification effort

Solution: try to guess the pairing of functions

Still sound: wrong guess can only make a valid formula invalid
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Simplifications (1)

Given x1 = x′
1, x2 = x′

2, x3 = x′
3, prove |= o1 = o2.

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

4 function instances → 6 comparisons

Guess: validity does not rely on f1 = f2 or on f3 = f4

Idea: only enforce functional consistency of pairs (Left,Right).
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Simplifications (2)

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

Down to 4 comparisons!

Another guess: equivalence only depends on f1 = f3 and f2 = f4

Pattern matching may help here
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Simplifications (3)

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

Match according
to patterns
(’signatures’)

+
�

�	
@

@R
v ·

�
�	

@
@R

v v

f1, f3

+
�

�	
@

@R
v 5

f2, f4Down to 2 comparisons!
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Simplifications (4)

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

Substitute
intermediate
variables (in the
example: a, b)
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@

@R
v ·
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@
@R

v v
?

+
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@
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v 5

X
−→
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f1, f3
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The SSA example revisited (1)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Map F1 to F3:

F
�

�	
@

@R
v v

Map F2 to F4:

F
�

�	
@

@R
v F

�
�	

@
@R

v v

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 44 / 48

The SSA example revisited (2)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Ackermann’s reduction:

ϕE
a :

out1 = in∧
out2 = f1 ∧
out3 = f2

ϕE
b : out′1 = f4

The verification condition has shrunk:[(
(out1 = in −→ f1 = f3) ∧
(out2 = f3 −→ f2 = f4)

)
∧ ϕE

a ∧ ϕE
b

]
−→ out3 = out′1
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Same example with Bryant’s reduction

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Bryant’s reduction:

ϕE
a :

out1 = in∧
out2 = f1 ∧
out3 = f2

ϕE
b : out′1 =(

case

„
case in = out1: f1

true : f3

«
= out2: f2

true : f4

)
The verification condition:

(ϕE
a ∧ ϕE

b ) −→ out3 = out′1
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So is Equality Logic with UFs interesting?

1 It is expressible enough to state something
interesting.

2 It is decidable and more efficiently solvable
than richer logics, for example in which some
functions are interpreted.

3 Models which rely on infinite-type variables are
expressed more naturally in this logic in
comparison with Propositional Logic.
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