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e Introduction to Equality Logic
o Definition, complexity @ A Boolean combination of Equalities and Propositions

. 1 =22 A (22 =23V (21 =23) NDA T = 2))
@ Reducing uninterpreted functions to Equality Logic

o We always push negations inside (NNF):

Using uninterpreted functions in proofs
o & p p x1 =22 A (22 =23V (1 # 23) A-b A2y #2))

@ Simplifications
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Syntax of Equality Logic Expressiveness and complexity

formula :  formula V formula
| —formula
| atom
@ Allows more natural description of systems, although technically it is
atom : term-variable = term-variable as expressible as Propositional Logic.
| term-variable = constant o Obviously NP-hard.

Boolean-variable -
| @ In fact, it is in NP, and hence NP-complete, for reasons we shall see
later.

o The term-variables are defined over some (possible infinite) domain.
The constants are from the same domain.

@ The set of Boolean variables is always separate from the set of term
variables
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formula V formula

formula

| —formula
| atom
atom 1 term = term

| Boolean-variable

term 1 term-variable
| function (list of terms)

The term-variables are defined over some (possible infinite) domain.
Constants are functions with an empty list of terms.
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Uninterpreted Functions

@ Every function is a mapping from a domain to a range.

o Example: the '+’ function over the naturals N is a mapping from
(N x N) to N.
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Uninterpreted Functions

o Suppose we replace '+’ by an uninterpreted binary function f(a,b)
o Example:

1+ x =3+ x4 is replaced by f(z1,22) = f(z3,24)

We lost the 'semantics’ of '+', as f can represent any binary function.

@ 'Loosing the semantics’ means that f is not restricted by any axioms
or rules of inference.

@ But f is still a function!
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Example: Circuit Transformations

The most general axiom for any function is functional consistency.

Example: if x =y, then f(x) = f(y) for any function f.

Functional consistency axiom schema:

T=AA AT =3, = flw1,..., 7)) = f(@],.. ., 7))

@ Sometimes, functional consistency is all that is needed for a proof.
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Example: Circuit Transformations

—R, Latch
o Circuits consist of
combinational gates and ! Combi-
latches (registers) national
part
L |
@ The combinational gates
can be modeled using
functions flay) = zVvy
A
@ The latches can be Ry = f(R,)

modeled with variables
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in «——————————— 4n: a primary input of the circuit
I F,G,H,K,D: some functions

over bit-vectors

Ly,...,Ls: latches (registers)

C': a predicate over bit-vectors

a multiplexer (case-split)
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Example: Circuit Transformations

Example: Circuit Transformations

I @ A pipeline processes data in stages
Stage 2 o Data is processed in parallel — as in an
(o) assembly line
@ @ Formal model:
Ly = f(I)
Ly = Ly
Ly = k(g(L1))
Ly = h(L1)

L5 = C(L2)7L32
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@ The maximum clock frequency depends
on the longest path between two latches
(H o Note that the output of g is used as input

to k
@ We want to speed up the design by
postponing k to the third stage

@ Also note that the circuit only uses one of
L3 or Ly, never both

= We can remove one of the latches
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: Circuit Transformations
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kermann’s reduction

o Given: a formula @UF with uninterpreted functions

@ For each function in oUF:

fi
1. Number function instances ___ Fg(Fl(a:)) =0
(from the inside out) ﬁr—’
2
2. Replace each function in- fa=0

stance with a new variable

3. Add functional consistency
constraint to pUF for every
pair of instances of the same
function.

—_—

((x=f1) — (f2=f1)

—>'f2:0
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S = 1)
22 i ]f(l (L1)) ,2 = C(Lll)
o Ly = (L) 79(L}) : (L)

t = LYyYk(LY) : U(LY
L b= LhTR(LY) s UL

Ls = L

o Equivalence in this case holds regardless of the actual functions

@ Conclusion: can be decided using Equality Logic and Uninterpreted
Functions
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Ackermann’s reduction: Example

Suppose we want to check
x1 £ a2V F(x1) = F(x2) V F(x1) # F(x3)
for validity.
@ First number the function instances:
1 # 22V Fi(11) = Fa(x2) V Fy(21) # Fs(x3)
@ Replace each function with a new variable:
i #FxVfi=hVi#£f
© Add functional consistency constraints:

(1 =22 — f1=f2) A
(r1=a3— fi=fz) N | —
(x2 =23 — fo=f3)

((z1 #z2) V (fr = f2) V (f1 # f3))
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o Given: a formula V¥ with uninterpreted functions
o For each function in oU%":

1. Number function
(from the inside out)

instances . F(a) = Fy(b)

2. Replace each function instance

: ; —— =R
F; with an expression F}*

case x1=uwm; :f1
Ty =1x; :fo
- . case a=10b:
Fi = : fi = < f1 )
E true : fy
Ti—1 =24 fio1
true : fi
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Using uninterpreted functions in proofs

o Uninterpreted functions give us the ability to represent an abstract
view of functions.
@ It over-approximates the concrete system.
141 =1 is a contradiction
But
F(1,1) =1 is satisfiable!
@ Conclusion: unless we are careful, we can give wrong answers, and
this way, loose soundness.
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Using uninterpreted functions in proofs

o Original formula:

a=b — F(G(a) = F(G(b))
@ Number the instances:
a=b — Fi(G1(a) = F5(G2(b))
@ Replace each function application with an expression:
a=b— Ff =Fy

where
Fy fi

o=

Gi = @

G§:<
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case G7=G5 :fi
true fa

“ g1
L 92

case a=2"0
true
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Using uninterpreted functions in proofs

@ In general, a sound but incomplete method is more useful than an
unsound but complete method.

@ A sound but incomplete algorithm for deciding a formula with
uninterpreted functions V%"

@ Transform it into Equality Logic formula o
@ If p¥ is unsatisfiable, return 'Unsatisfiable’
@ Else return 'Don’t know'

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 22 /48

o Question #1: is this useful?

o Question #2: can it be made complete in some cases?

@ When the abstract view is sufficient for the proof, it enables (or at
least simplifies) a mechanical proof.

@ So when is the abstract view sufficient?
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Using uninterpreted functions in proofs

@ (common) Proving equivalence between:
o Two versions of a hardware design (one with and one without a
pipeline)
o Source and target of a compiler (" Translation Validation”)

o (rare) Proving properties that do not rely on the exact functionality of
some of the functions
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Example: Translation Validation

Example: Translation Validation

@ Assume the source program has the statement

z= (o1 +y1) - (22 +y2);

which the compiler turned into:

ur =1 + Y13
ug = T2 + Y2;
Z =Ul U,

@ We need to prove that:

(ui=x1+m1 AN uy=2z24+y2 A z=1uy uz)

— (z= (@1 +y1) (22 +y2))
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Uninterpreted functions: usability

@ Good: each function on the left can be mapped to a function on the
right with equivalent arguments

@ Bad: almost all other cases

@ Example:

Left Right
T+ 2x
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o Claim: YT is valid

@ We will prove this by reducing it to an Equality Logic formula
P [(331:902/\y1:y2 — fi=/2) /\]

LA (w1 =fiNug=fo — g1=g2)
(ui=fi Nug=fa AN z2=g1) — 2z=go)
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Uninterpreted functions: usability

@ This is easy to prove:

(x1 =22 Ay1 =92) — (21 +y1 = 22 + 1)

@ This requires commutativity:
(xr =22 Ay1 =y2) — (21 +y1 = y2 + 22)
o Fix by adding:
(z1+y1 =y1 +x1) A (22 +y2 = y2 + 22)

@ What about other cases?
Use more rewriting rules!
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ams to equ

int power3(int in) {
out = in;
int power3 new(int in) {
for(i=0; i<2; i++) out = (in*in)*in;
out = out * in; return out;

return out;

@ These two functions return the same value regardless if it is '*’

other function.

or any

o Conclusion: we can prove equivalence by replacing '*' with an
uninterpreted function
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@ But first we need to know how to turn programs into equations.

@ There are several options — we will see static single assignment for
bounded programs.
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@ — see compiler class

@ Idea: Rename variables such that each variable is assigned exactly
once

X=X+y;

X=X*2;

alil=100;

Read assignments as equalities

\ X1¥X0+yo;
Xo=X1%*2;
a; [19]=100;

Example:

Generate constraints by simply conjoining these equalities
X1=X0%Yo;
X9=X1*2; |

a; [1p]1=100;

r1=20+Y A
xTo=x1 %2 A
(ll[io] =100

Example:
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SSA for bounded programs

What about i£? Branches are handled using ¢-nodes.

int main() { int main() { y =8 A
int x, y, z; int x, y, z; y2:y171 A
y=8; y1=8; ys=y1+1 A
. . Ys =
if (x) if (x0)

y=-; ) y2=y1-1; ) (207072 : y3)A
else |__T else L__I z1=ys+1
NAR y3=y1+1;
ya=¢(y2, y3);
z=y+1; z1=y4+1;
} }
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What about loops?
— We unwind them!

void £(...) {

1f &cond) {

void £(...) { BODY;
. if (cond) {
while(cond) { BODY;
BODY; . while(cond) {
} BODY;
Remainder; }
} }

Remainder;
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A for bounded programs: CBMC
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SSA for bounded programs

Some caveats:
@ Unwind how many times?

@ Must preserve locality of variables declared inside loop

There is a tool available that does this
o CBMC - C Bounded Model Checker
o Bound is verified using unwinding assertions

@ Used frequently for embedded software
—— Bound is a run-time guarantee

@ Integrated into Eclipse

@ Decision problem can be exported
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wmple: equivalence of C programs (2/4)
mple: equivale f C programs (2/4)

int power3(int in) {
out = in;

int power3_new(int in) {
out = (in*in)*in;
return out;

for(i=0; i<2; i++)
out = out * in;

return out;

}

Static single assignment (SSA) form:
outy =in A
outo = outy ¥ in A
outs = outs * in

out] = (in xin) % in

Prove that both functions return the same value:

outs = out)
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Example: equivalence of C programs (3/4)

Static single assignment (SSA) form:

out; = in N
outy = outy *in A out] = (in xin) *in
outs = outy * in

With uninterpreted functions:
out; = in N
outy = F(outy,in) A
outs = F(oute, in)

out)] = F(F(in,in),in)

With numbered uninterpreted functions:
out; = in N
outy = Fi(outy,in) A
outs = Fa(outs,in)

out) = Fy(Fs(in,in),in)
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Uninterpreted functions: simplifications

o Let n be the number of instances of F()
o Both reduction schemes require O(n?) comparisons

@ This can be the bottleneck of the verification effort

Solution: try to guess the pairing of functions
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Still sound: wrong guess can only make a valid formula invalid
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Simplifications (2)

o1=(x1+ (a-x2)) Na=x3+5 Left
fi fa
oy =(z) +(b-2))Ab=a4+5 Right

f3 fa
@ Down to 4 comparisons!
@ Another guess: equivalence only depends on f; = f3 and fo = fi
o Pattern matching may help here

Decision Procedures

37 /48

39 /48

41/ 48

Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:
outy = in A
outy = Fy(outy,in) A
outs = Fy(outy,in)

outy = Fy(Fs3(in,in),in)

Ackermann’s reduction:
out; =in A

OE . outy = fi A cpr D outy = fy
outs = f2
The verification condition:

(outy = outa— f1 = fa) A

(outy =in — f1=f3) A

(outy = f3 — fi=fa) A E . E o
(outy =in — fo=fs) A |/Pa NP0 | T ouls=ouh
(outy = f3 — fa=f3) A

(i )
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o Given z1 =, xp = ', 3 = a, prove |= 01 = 0s.

o1r=(x1+(a-z2)) Na=x3+5 Left
bjl fa
Right

oy= (a1 +(b-zh) Nb=a5+5
N—— SN——
f3 fa
@ 4 function instances — 6 comparisons
o Guess: validity does not rely on fi = fo oron f3 = fy
@ Idea: only enforce functional consistency of pairs (Left,Right).
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Simplifications (3)

o= (z1+(a-x2)) Na=1x3+5 Left
—— ~——
h f2
oy= (a1 +(b-ah) ANb=a5+5 Right
f3 fa
+ .
Match according /\ +
to patterns v . ' /\
'signat ' .
('signatures’) /\ ! 2 y
v v 1
Down to 2 comparisons! fi, f3 ‘ J2, Ja

Decision Procedures
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Simplifications (4)

The SSA example revisited (1)

or=(@1+(a-22)) Na=x3+5 Left
N —— SN——
f1 fa
oy= (21 +(b-2h)) ANb=ab+5
_7—/ \‘\fl—/
3 4

Substitute
intermediate
variables (in the
example: a, b)

Right
.
N
SV
/“}
;
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xample revisited (2)

With numbered uninterpreted functions:
out; =in N
outy = Fy(outy,in) A
outs = Fy(outa,in)

outy = Fy(F3(in,in),in)

Ackermann'’s reduction:
outy = in A
©E . outy = fi A wf
outz = fa

s outh = fy

The verification condition has shrunk:

K (outy =in — f1=f3) A

AE A OEl — outy = out)
(outsy = f3 — fo = f1) ) Ya %} 3 1
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s Equality Logic with UFs interesting?

@ It is expressible enough to state something
interesting.

@ It is decidable and more efficiently solvable
than richer logics, for example in which some
functions are interpreted.

© Models which rely on infinite-type variables are
expressed more naturally in this logic in
comparison with Propositional Logic.
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With numbered uninterpreted functions:
out; = in A
outa = Fy(outy,in) A
outz = Fa(outs, in)

outy = Fy(F3(in,in),in)

Map F} to Fi: Map F; to Fy:
F F
N
v v v F
v v
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Same example with Bryant’s reduction

With numbered uninterpreted functions:
outy =in A
outy = Fy(outy,in) A
outs = Fy(outs, in)

outh = Fy(F3(in,in),in)

Bryant's reduction:

outy = in A oF: out, =
Vo b ;
o outs = fi A (= (== izt f ) oty )
outy = f2 true : fa

The verification condition:

(@f A (pbb) — outz = out
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