
Decision Procedures
An Algorithmic Point of View

Equalities and Uninterpreted Functions

D. Kroening O. Strichman

ETH/Technion

Version 1.0, 2007

Part III

Equalities and Uninterpreted Functions

Outline

1 Introduction to Equality Logic
Definition, complexity

2 Reducing uninterpreted functions to Equality Logic

3 Using uninterpreted functions in proofs

4 Simplifications

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 3 / 48

Equality Logic

A Boolean combination of Equalities and Propositions

x1 = x2 ∧ (x2 = x3 ∨ ¬((x1 = x3) ∧ b ∧ x1 = 2))

We always push negations inside (NNF):

x1 = x2 ∧ (x2 = x3 ∨ ((x1 6= x3) ∧ ¬b ∧ x1 6= 2))

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 4 / 48

Syntax of Equality Logic

formula : formula ∨ formula
| ¬formula
| atom

atom : term-variable = term-variable
| term-variable = constant
| Boolean-variable

The term-variables are defined over some (possible infinite) domain.
The constants are from the same domain.

The set of Boolean variables is always separate from the set of term
variables

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 5 / 48

Expressiveness and complexity

Allows more natural description of systems, although technically it is
as expressible as Propositional Logic.

Obviously NP-hard.

In fact, it is in NP, and hence NP-complete, for reasons we shall see
later.

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 6 / 48

Equality logic with uninterpreted functions

formula : formula ∨ formula
| ¬formula
| atom

atom : term = term
| Boolean-variable

term : term-variable
| function (list of terms)

The term-variables are defined over some (possible infinite) domain.
Constants are functions with an empty list of terms.

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 7 / 48

Uninterpreted Functions

Every function is a mapping from a domain to a range.

Example: the ’+’ function over the naturals N is a mapping from
〈N × N〉 to N.

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 8 / 48

Uninterpreted Functions

Suppose we replace ’+’ by an uninterpreted binary function f(a, b)
Example:

x1 + x2 = x3 + x4 is replaced by f(x1, x2) = f(x3, x4)

We lost the ’semantics’ of ’+’, as f can represent any binary function.

’Loosing the semantics’ means that f is not restricted by any axioms
or rules of inference.

But f is still a function!

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 9 / 48

Uninterpreted Functions

The most general axiom for any function is functional consistency.

Example: if x = y, then f(x) = f(y) for any function f.

Functional consistency axiom schema:

x1 = x′
1 ∧ . . . ∧ xn = x′

n =⇒ f(x1, . . . , xn) = f(x′
1, . . . , x

′
n)

Sometimes, functional consistency is all that is needed for a proof.

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 10 / 48

Example: Circuit Transformations

Circuits consist of
combinational gates and
latches (registers)

R1

I

Latch

Combi-
national
part

The combinational gates
can be modeled using
functions

The latches can be
modeled with variables

f(x, y) := x ∨ y

R′
1 = f(R1, I)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 11 / 48

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

� in: a primary input of the circuit

PPPPPPPPPi

������)

F,G,H,K,D: some functions
over bit-vectors

@
@

@
@

@@I

�
�

�
�

��+

�
�

�
�

�
�

�
�

�
���

L1, . . . , L5: latches (registers)

� C: a predicate over bit-vectors

� a multiplexer (case-split)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 12 / 48

Example: Circuit Transformations

Stage 1

Stage 2

Stage 3

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

A pipeline processes data in stages

Data is processed in parallel – as in an
assembly line

Formal model:

L1 = f(I)
L2 = L1

L3 = k(g(L1))
L4 = h(L1)
L5 = c(L2) ?L3 : l(L4)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 13 / 48

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

The maximum clock frequency depends
on the longest path between two latches

Note that the output of g is used as input
to k

We want to speed up the design by
postponing k to the third stage

Also note that the circuit only uses one of
L3 or L4, never both

⇒ We can remove one of the latches

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 14 / 48

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

==
??

1 0

1 0

in

F

L′
2

L′
1

GC

K

L′
3

H

L′
5

D

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 15 / 48

Example: Circuit Transformations

L1 = f(I)
L2 = L1

L3 = k(g(L1))
L4 = h(L1)
L5 = c(L2) ?L3 : l(L4)

L′
1 = f(I)

L′
2 = c(L′

1)
L′

3 = c(L′
1) ? g(L′

1) : h(L′
1)

L′
5 = L′

2 ? k(L′
3) : l(L′

3)

L5
?
= L′

5

Equivalence in this case holds regardless of the actual functions

Conclusion: can be decided using Equality Logic and Uninterpreted
Functions

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 16 / 48

Transforming UFs to Equality Logic using Ackermann’s reduction

Given: a formula ϕUF with uninterpreted functions

For each function in ϕUF :

1. Number function instances
(from the inside out)

- F2(F1(x)) = 0F2(

f1︷ ︸︸ ︷
F1(x))︸ ︷︷ ︸
f2

= 0

2. Replace each function in-
stance with a new variable

- f2 = 0

3. Add functional consistency
constraint to ϕUF for every
pair of instances of the same
function.

- ((x = f1) −→ (f2 = f1))
−→ f2 = 0

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 17 / 48

Ackermann’s reduction: Example

Suppose we want to check

x1 6= x2 ∨ F (x1) = F (x2) ∨ F (x1) 6= F (x3)

for validity.

1 First number the function instances:

x1 6= x2 ∨ F1(x1) = F2(x2) ∨ F1(x1) 6= F3(x3)

2 Replace each function with a new variable:

x1 6= x2 ∨ f1 = f2 ∨ f1 6= f3

3 Add functional consistency constraints: (x1 = x2 → f1 = f2) ∧
(x1 = x3 → f1 = f3) ∧
(x2 = x3 → f2 = f3)

 →

((x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3))

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 18 / 48

Transforming UFs to Equality Logic using Bryant’s reduction

Given: a formula ϕUF with uninterpreted functions

For each function in ϕUF :

1. Number function instances
(from the inside out)

- F1(a) = F2(b)

2. Replace each function instance
Fi with an expression F ∗

i

- F ∗
1 = F ∗

2

F ∗
i :=

case x1 = xi : f1

x2 = xi : f2

...
xi−1 = xi: fi−1

true : fi

 - f1 =
(

case a = b: f1

true : f2

)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 19 / 48

Example of Bryant’s reduction

Original formula:

a = b → F (G(a) = F (G(b))

Number the instances:

a = b → F1(G1(a) = F2(G2(b))

Replace each function application with an expression:

a = b → F ∗
1 = F ∗

2

where

F ∗
1 = f1

F ∗
2 =

(
case G∗

1 = G∗
2 : f1

true : f2

)
G∗

1 = g1

G∗
2 =

(
case a = b : g1

true : g2

)
D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 20 / 48

Using uninterpreted functions in proofs

Uninterpreted functions give us the ability to represent an abstract
view of functions.

It over-approximates the concrete system.
1 + 1 = 1 is a contradiction

But
F (1, 1) = 1 is satisfiable!

Conclusion: unless we are careful, we can give wrong answers, and
this way, loose soundness.

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 21 / 48

Using uninterpreted functions in proofs

In general, a sound but incomplete method is more useful than an
unsound but complete method.

A sound but incomplete algorithm for deciding a formula with
uninterpreted functions ϕUF :

1 Transform it into Equality Logic formula ϕE

2 If ϕE is unsatisfiable, return ’Unsatisfiable’
3 Else return ’Don’t know’

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 22 / 48

Using uninterpreted functions in proofs

Question #1: is this useful?

Question #2: can it be made complete in some cases?

When the abstract view is sufficient for the proof, it enables (or at
least simplifies) a mechanical proof.

So when is the abstract view sufficient?

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 23 / 48

Using uninterpreted functions in proofs

(common) Proving equivalence between:

Two versions of a hardware design (one with and one without a
pipeline)
Source and target of a compiler (”Translation Validation”)

(rare) Proving properties that do not rely on the exact functionality of
some of the functions

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 24 / 48

Example: Translation Validation

Assume the source program has the statement

z = (x1 + y1) · (x2 + y2);

which the compiler turned into:

u1 = x1 + y1;
u2 = x2 + y2;
z = u1 · u2;

We need to prove that:

(u1 = x1 + y1 ∧ u2 = x2 + y2 ∧ z = u1 · u2)
−→ (z = (x1 + y1) · (x2 + y2))

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 25 / 48

Example: Translation Validation

Claim: ϕUF is valid

We will prove this by reducing it to an Equality Logic formula

ϕE =
 (x1 = x2 ∧ y1 = y2 −→ f1 = f2) ∧

(u1 = f1 ∧ u2 = f2 −→ g1 = g2)

 −→

((u1 = f1 ∧ u2 = f2 ∧ z = g1) −→ z = g2)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 26 / 48

Uninterpreted functions: usability

Good: each function on the left can be mapped to a function on the
right with equivalent arguments

Bad: almost all other cases

Example:

Left Right

x + x 2x

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 27 / 48

Uninterpreted functions: usability

This is easy to prove:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = x2 + y2)

This requires commutativity:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = y2 + x2)

Fix by adding:

(x1 + y1 = y1 + x1) ∧ (x2 + y2 = y2 + x2)

What about other cases?
Use more rewriting rules!

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 28 / 48

Example: equivalence of C programs (1/4)

int power3(int in) {
out = in;

for(i=0; i<2; i++)
out = out * in;

return out;
}

int power3 new(int in) {
out = (in*in)*in;
return out;

}

These two functions return the same value regardless if it is ’*’ or any
other function.

Conclusion: we can prove equivalence by replacing ’*’ with an
uninterpreted function

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 29 / 48

From programs to equations

But first we need to know how to turn programs into equations.

There are several options – we will see static single assignment for
bounded programs.

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 30 / 48

Static Single Assignment (SSA) form

→ see compiler class

Idea: Rename variables such that each variable is assigned exactly
once

Example:

x=x+y;
x=x*2;

a[i]=100;

x1=x0+y0;
x2=x1*2;

a1[i0]=100;

Read assignments as equalities

Generate constraints by simply conjoining these equalities

Example:

x1=x0+y0;
x2=x1*2;

a1[i0]=100;

x1 = x0 + y0 ∧
x2 = x1 ∗ 2 ∧
a1[i0] = 100

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 31 / 48

SSA for bounded programs

What about if? Branches are handled using φ-nodes.

int main() {
int x, y, z;

y=8;

if(x)
y--;

else
y++;

z=y+1;
}

int main() {
int x, y, z;

y1=8;

if(x0)
y2=y1-1;

else
y3=y1+1;

y4=φ(y2, y3);

z1=y4+1;
}

y1 = 8 ∧
y2 = y1 − 1 ∧
y3 = y1 + 1 ∧
y4 =
(x0 6=0 ? y2 : y3)∧
z1 = y4 + 1

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 32 / 48

SSA for bounded programs

What about loops?
→ We unwind them!

void f(...) {
...
while(cond) {
BODY;

}
...
Remainder;

}

−→

void f(...) {
...
if(cond) {
BODY;
if(cond) {
BODY;
while(cond) {
BODY;

}
}

}
...
Remainder;

}

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 33 / 48

SSA for bounded programs

Some caveats:

Unwind how many times?

Must preserve locality of variables declared inside loop

There is a tool available that does this

CBMC – C Bounded Model Checker

Bound is verified using unwinding assertions

Used frequently for embedded software
−→ Bound is a run-time guarantee

Integrated into Eclipse

Decision problem can be exported

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 34 / 48

SSA for bounded programs: CBMC

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 35 / 48

Example: equivalence of C programs (2/4)

int power3(int in) {
out = in;

for(i=0; i<2; i++)
out = out * in;

return out;
}

int power3 new(int in) {
out = (in*in)*in;
return out;

}

Static single assignment (SSA) form:
out1 = in∧
out2 = out1 ∗ in∧
out3 = out2 ∗ in

out′1 = (in ∗ in) ∗ in

Prove that both functions return the same value:

out3 = out′1

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 36 / 48

Example: equivalence of C programs (3/4)

Static single assignment (SSA) form:
out1 = in∧
out2 = out1 ∗ in∧
out3 = out2 ∗ in

out′1 = (in ∗ in) ∗ in

With uninterpreted functions:
out1 = in∧
out2 = F (out1, in)∧
out3 = F (out2, in)

out′1 = F (F (in, in), in)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 37 / 48

Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Ackermann’s reduction:

ϕE
a :

out1 = in∧
out2 = f1 ∧
out3 = f2

ϕE
b : out′1 = f4

The verification condition:

(out1 = out2→ f1 = f2) ∧
(out1 = in → f1 = f3) ∧
(out1 = f3 → f1 = f4) ∧
(out2 = in → f2 = f3) ∧
(out2 = f3 → f2 = f3) ∧
(in = f3 → f3 = f4)

 ∧ ϕE
a ∧ ϕE

b

 −→ out3 = out′1

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 38 / 48

Uninterpreted functions: simplifications

Let n be the number of instances of F ()
Both reduction schemes require O(n2) comparisons

This can be the bottleneck of the verification effort

Solution: try to guess the pairing of functions

Still sound: wrong guess can only make a valid formula invalid

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 39 / 48

Simplifications (1)

Given x1 = x′
1, x2 = x′

2, x3 = x′
3, prove |= o1 = o2.

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

4 function instances → 6 comparisons

Guess: validity does not rely on f1 = f2 or on f3 = f4

Idea: only enforce functional consistency of pairs (Left,Right).

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 40 / 48

Simplifications (2)

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

Down to 4 comparisons!

Another guess: equivalence only depends on f1 = f3 and f2 = f4

Pattern matching may help here

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 41 / 48

Simplifications (3)

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

Match according
to patterns
(’signatures’)

+
�

�	
@

@R
v ·

�
�	

@
@R

v v

f1, f3

+
�

�	
@

@R
v 5

f2, f4Down to 2 comparisons!

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 42 / 48

Simplifications (4)

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

Substitute
intermediate
variables (in the
example: a, b)

+
�

�	
@

@R
v ·

�
�	

@
@R

v v
?

+
�

�	
@

@R
v 5

X
−→

+
�

�	
@

@R
v ·

�
�	

@
@R
v+

�
�	

@
@R

v 5
f1, f3

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 43 / 48

The SSA example revisited (1)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Map F1 to F3:

F
�

�	
@

@R
v v

Map F2 to F4:

F
�

�	
@

@R
v F

�
�	

@
@R

v v

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 44 / 48

The SSA example revisited (2)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Ackermann’s reduction:

ϕE
a :

out1 = in∧
out2 = f1 ∧
out3 = f2

ϕE
b : out′1 = f4

The verification condition has shrunk:[(
(out1 = in −→ f1 = f3) ∧
(out2 = f3 −→ f2 = f4)

)
∧ ϕE

a ∧ ϕE
b

]
−→ out3 = out′1

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 45 / 48

Same example with Bryant’s reduction

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Bryant’s reduction:

ϕE
a :

out1 = in∧
out2 = f1 ∧
out3 = f2

ϕE
b : out′1 =(

case

„
case in = out1: f1

true : f3

«
= out2: f2

true : f4

)
The verification condition:

(ϕE
a ∧ ϕE

b) −→ out3 = out′1

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 46 / 48

So is Equality Logic with UFs interesting?

1 It is expressible enough to state something
interesting.

2 It is decidable and more efficiently solvable
than richer logics, for example in which some
functions are interpreted.

3 Models which rely on infinite-type variables are
expressed more naturally in this logic in
comparison with Propositional Logic.

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 47 / 48

