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Pointers and Their Applications

Pointer: a program variable that refers to some other program
construct

This other construct may be

another variable, including a pointer,

a function or method.
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Motivation

Pointers to other variables allow code fragments
to operate on different sets of data

This avoids inefficient copying of data

Pointers enable dynamic data structures

But: Many bugs relate to the (ab-)use of pointers
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Implementation

Memory cells of a computer have addresses,
i.e., each cell has a unique number

The value of a pointer is such a number

memory model: the way the memory cells are addressed
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Formalization

Definition (Our Memory Model)

Set of addresses A is a subinterval of the integers
{0, . . . , N − 1}
Each address corresponds to a memory cell that is able to
store one data word.

The set of data words is denoted by D.

Memory valuation M : A −→ D

(this is a continuous, uniform address space)

Decision Procedures – Pointers 6



Arrays and Structs

A variable may require more than one data word to be stored in
memory

Examples:

structs,

arrays,

double-precision floating-point

Let σ(v) with v ∈ V denote the size (in data words) of v.
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The Memory Layout

Let V denote the set of variables.

Definition (memory layout)

A memory layout L : V −→ A is a mapping from V to an address
A. The address of v ∈ V is also called the memory location of v.

The memory locations of the statically allocated variables are
usually non-overlapping

The memory layout is not necessarily continuous
(e.g., due to alignment restrictions)

Decision Procedures – Pointers 8



The Memory Layout: Example

int var_a, var_b, var_c;
struct { int x; int y; } S;
int array[4];
int *p = &var_c;

int main() {

*p=100;
}

var a

var b

var c

S.x

S.y

array[0]

array[1]

array[2]

array[3]

p

0

1

2

3

4

5

6

7

8

9
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Dynamic Memory Allocation

There is an area of memory (called heap)
for objects that are created at run time

A library maintains a list of the memory regions that are
unused

Some function allocates a memory region of a given size and
returns a pointer to it

malloc() in C,
new in C++, C#, and Java.
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Example from Program Analysis

Program analysis tools often need to reason about pointers

void f(int *sum) {

*sum = 0;

for(i=0; i<10; i++)

*sum = *sum + array[i];
}

This program does not obey the obvious specification
if the address held by sum is equal to the address of i

Aliasing not anticipated by the programmer is a common
source of problems
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A Simple Pointer Logic

Definition (Pointer Logic)

Syntax:

formula : formula ∧ formula | ¬formula | (formula) | atom
atom : pointer = pointer | term = term |

pointer < pointer | term < term
pointer : pointer − identifier | pointer + term | (pointer) |

&identifier | & ∗ pointer | ∗ pointer | NULL

term : identifier | ∗ pointer | term op term | (term) |
integer − constant | identifier [ term ]

op : + | −

Warning: = is equality here, not assignment
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Example

Let p, q denote pointer identifiers, and let i, j denote integer
identifiers.

The following formulas are well-formed according to the grammar:

∗(p + i) = 1,

∗(p + ∗p) = 0,

p = q ∧ ∗p = 5,

∗ ∗ ∗ ∗ ∗p = 1,

p < q.
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Example

The following formulas are not permitted by the grammar:

p + i,

p = i,

∗(p + q),
∗1 = 1,

p < i.
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Semantics

We define the semantics by referring to a specific memory
layout L and a specific memory valuation M .

Pointer logic formulas are predicates on M,L pairs

We obtain a reduction to integer arithmetic and array logic
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Semantics

We define a semantics using the function

J·K : LP −→ LD

LP : language of pointer expressions
LD: expressions over variables with values from D
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Semantics

Defined recursively.

Boolean connectives:

Jf1 ∧ f2K = Jf1K ∧ Jf2K
J¬fK = ¬JfK

Predicates:

Jp1 = p2K = Jp1K = Jp2K where p1, p2 are pointer expressions
Jp1 < p2K = Jp1K < Jp2K where p1, p2 are pointer expressions
Jt1 = t2K = Jt1K = Jt2K where t1, t2 are terms
Jt1 < t2K = Jt1K < Jt2K where t1, t2 are terms
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Semantics

Non-pointer terms:

JvK = M [L[v]] where v ∈ V is a variable with σ(v) = 1
Jt1 op t2K = Jt1K op Jt2K where t1, t2 are terms

JcK = c where c is an integer constant
Jv[t]K = M [L[v] + JtK] where v is an array identifier, t is a term
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Semantics

Pointer-related expressions:

JpK = M [L[p]] where p is a pointer identifier
Jp + tK = JpK + JtK where p is a pointer expression, t is a term

J&vK = L[v] where v ∈ V is a variable
J& ∗ pK = JpK where p is a pointer expression

JNULLK = 0
J∗pK = M [JpK] where p is a pointer expression
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Notation

A pointer p points to a variable x if M [L[p]] = L[x]

Shorthand: p ↪→ z for ∗p = z

Warning: the meaning p + i does not depend on the type of p
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Example I

Let a be an array identifier:

∗((&a) + 1) = a[1]

The definition expands as follows:

J∗((&a) + 1) = a[1]K

⇐⇒ J∗((&a) + 1)K = Ja[1]K
⇐⇒ M [J(&a) + 1K] = M [L[a] + J1K]
⇐⇒ M [J&aK + J1K] = M [L[a] + 1]
⇐⇒ M [L[a] + 1] = M [L[a] + 1]

The last formula is obviously valid.

Decision Procedures – Pointers 21



Example I

Let a be an array identifier:

∗((&a) + 1) = a[1]

The definition expands as follows:

J∗((&a) + 1) = a[1]K ⇐⇒ J∗((&a) + 1)K = Ja[1]K

⇐⇒ M [J(&a) + 1K] = M [L[a] + J1K]
⇐⇒ M [J&aK + J1K] = M [L[a] + 1]
⇐⇒ M [L[a] + 1] = M [L[a] + 1]

The last formula is obviously valid.

Decision Procedures – Pointers 21



Example I

Let a be an array identifier:

∗((&a) + 1) = a[1]

The definition expands as follows:

J∗((&a) + 1) = a[1]K ⇐⇒ J∗((&a) + 1)K = Ja[1]K
⇐⇒ M [J(&a) + 1K] = M [L[a] + J1K]

⇐⇒ M [J&aK + J1K] = M [L[a] + 1]
⇐⇒ M [L[a] + 1] = M [L[a] + 1]

The last formula is obviously valid.

Decision Procedures – Pointers 21



Example I

Let a be an array identifier:

∗((&a) + 1) = a[1]

The definition expands as follows:

J∗((&a) + 1) = a[1]K ⇐⇒ J∗((&a) + 1)K = Ja[1]K
⇐⇒ M [J(&a) + 1K] = M [L[a] + J1K]
⇐⇒ M [J&aK + J1K] = M [L[a] + 1]

⇐⇒ M [L[a] + 1] = M [L[a] + 1]

The last formula is obviously valid.

Decision Procedures – Pointers 21



Example I

Let a be an array identifier:

∗((&a) + 1) = a[1]

The definition expands as follows:

J∗((&a) + 1) = a[1]K ⇐⇒ J∗((&a) + 1)K = Ja[1]K
⇐⇒ M [J(&a) + 1K] = M [L[a] + J1K]
⇐⇒ M [J&aK + J1K] = M [L[a] + 1]
⇐⇒ M [L[a] + 1] = M [L[a] + 1]

The last formula is obviously valid.

Decision Procedures – Pointers 21



Example II

The translated formula must evaluate to true for any L and M !

The following formula is not valid:

∗p = 1 −→ x = 1

For p 6= &x, this formula evaluates to false.
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Axiomatization of the Memory Model

It is possible to exploit assumptions made about the memory
model.

Depends highly on the architecture!

Here: we formalize properties that most architectures comply
with.
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Example

On most architectures, the following two formulas are valid:

1 &x 6= NULL

2 &x 6= &y

(1) translates into L[x] 6= 0 and relies on the fact that no object
has address 0.

(2) relies on non-overlapping addresses
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Memory Axiom 1

Memory Model Axiom (“No object has address 0”)

∀v ∈ V. L[v] 6= 0
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Overlapping Objects

How do we address (2)?

Suggestion:

∀v1, v2 ∈ V. v1 6= v2 −→ L[v1] 6= L[v2]

Decision Procedures – Pointers 26



Memory Axioms 2 and 3

The following two conditions together are stronger:

Memory Model Axiom (“Objects have size at least one”)

∀v ∈ V. σ(v) ≥ 1

Memory Model Axiom (“Objects do not overlap”)

∀v1, v2 ∈ V. v1 6= v2 −→ {L[v1], . . . , L[v1] + σ(v1)− 1} ∩
{L[v2], . . . , L[v2] + σ(v2)− 1} = ∅ .
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More?

Some code relies on additional, architecture-specific guarantees,
e.g.,

byte ordering

endianness,

alignment,

structure layout.

Some program analysis tools allow adding such rules.

Decision Procedures – Pointers 28



Structure Types

Convenient way to implement data structures

We add this as a syntactic extension

Notation: s.f to denote the value of the field f in the
structure s
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Mapping to Array Types

Each field of the structure is assigned a unique offset: o(f)
Meaning of s.f :

s.f
.= ∗((&s) + o(f))

Following PASCAL and ANSI-C syntax:

p->f
.= (∗p).f

Adopted from separation logic:

p ↪→ a, b, c, . . .
.=

∗(p + 0) = a ∧
∗(p + 1) = b ∧
∗(p + 2) = c . . . .
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Modeling Lists

Simplest dynamically allocated data structure

Realized by means of a structure type that contains fields for
a next pointer
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List Example

. . .

p ’e’ ’x’ ’t’

0

’t’

p ↪→ ’t’, p1

∧ p1 ↪→ ’e’, p2

∧ p2 ↪→ ’x’, p3

∧ p3 ↪→ ’t’, NULL .
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List Example

Define a recursive shorthand for the i-th member of a list:

list-elem(p, 0) .= p ,
list-elem(p, i) .= list-elem(p, i− 1)->n for i ≥ 1

We use ’n’ as the next pointer field.

Now define the shorthand list(p, l):

list(p, l) .= list-elem(p, l) = NULL
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Cyclic Lists

A linked list is cyclic if the pointer of the last element points to the
first one:

. . . .

’e’ ’x’ ’t’’t’p

Would this work?

my-list(p, l) .= list-elem(p, l) = p .
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Cyclic Lists

Unfortunately, the following satisfies my-list(p, 4):

.

’t’p

→ need to rule out sharing
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Cyclic Lists

Define a shorthand ‘overlap’ as follows:

overlap(p, q) .= p = q ∨ p + 1 = q ∨ p = q + 1

Use to state that all list elements are pairwise disjoint:

list-disjoint(p, 0) .= true ,
list-disjoint(p, l) .= list-disjoint(p, l − 1)∧
∀0 ≤ i < l − 1. ¬overlap(list-elem(p, i), list-elem(p, l − 1))

Grows quadratically in l!
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Trees

..

83

5

1 4

. .

p

0 0 0 0

0 0

Goal: model binary search tree

Pointer to the left-hand child: l

Pointer to the right-hand child: r
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Trees

Idea:
(n.l 6= NULL −→ n.l->x < n.x)

∧ (n.r 6= NULL −→ n.r->x > n.x) .

Not strong enough for O(h) lookup!
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Transitive Closure

Let us first define the transitive closure of a relation R:

TC1
R(p, q) .= R(p, q)

TCi
R(p, q) .= ∃p′. TCi−1

R (p, p′) ∧R(p′, q)
TC(p, q) .= ∃i. TCi

R(p, q)
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Trees

Now define a predicate tree-reach(p, q):

tree-reach(p, q) .= p 6= NULL ∧ q 6= NULL∧
(p = q ∨ p->l = q ∨ p->r = q)

Use the transitive closure:

tree-reach*(p, q) ⇐⇒ TCtree-reach(p,q)
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Trees

New definition:

(∀p. tree-reach*(n.l, p) −→ p->x < n.x)
∧ (∀p. tree-reach*(n.r, p) −→ p->x > n.x) .
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Using the Semantic Translation

J·K is a decision procedure!

1 Define ϕ′ .= JϕK
2 Pass ϕ′ to procedure for integers and arrays
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Example I

Let x be a variable, and p be a pointer.

p = &x ∧ x = 1 −→ ∗p = 1

Use semantic definition:

Jp = &x ∧ x = 1 −→ ∗p = 1K
⇐⇒ Jp = &xK ∧ Jx = 1K −→ J∗p = 1K
⇐⇒ JpK = J&xK ∧ JxK = 1 −→ J∗pK = 1
⇐⇒ M [L[p]] = L[x] ∧M [L[x]] = 1 −→ M [M [L[p]]] = 1 .

The last formula is obviously valid.
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Example II

Jp ↪→ x −→ p = &xK
⇐⇒ Jp ↪→ xK −→ Jp = &xK
⇐⇒ J∗p = xK −→ JpK = J&xK
⇐⇒ J∗pK = JxK −→ M [L[p]] = L[x]
⇐⇒ M [M [L[p]]] = M [L[x]] −→ M [L[p]] = L[x]

Counterexample:

L[p] = 1, L[x] = 2, M [1] = 3, M [2] = 10, M [3] = 10

1

3 1010

0 2 3

p x

Decision Procedures – Pointers 44



Example II

Jp ↪→ x −→ p = &xK
⇐⇒ Jp ↪→ xK −→ Jp = &xK
⇐⇒ J∗p = xK −→ JpK = J&xK
⇐⇒ J∗pK = JxK −→ M [L[p]] = L[x]
⇐⇒ M [M [L[p]]] = M [L[x]] −→ M [L[p]] = L[x]

Counterexample:

L[p] = 1, L[x] = 2, M [1] = 3, M [2] = 10, M [3] = 10

1

3 1010

0 2 3

p x

Decision Procedures – Pointers 44



Applying the Memory Model Axioms

What if the formula relies on a memory model axiom?

Example:
σ(x) = 2 −→ &y 6= &x + 1

The semantic translation yields:

σ(x) = 2 −→ L[y] 6= L[x] + 1

This needs the no-overlapping axiom:

{L[x], . . . , L[x] + σ(x)− 1} ∩ {L[y], . . . , L[y] + σ(y)− 1} = ∅
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Applying the Memory Model Axioms

1 Transform into linear arithmetic over the integers as follows:

(L[x] + σ(x)− 1 < L[y]) ∨ (L[x] > L[y] + σ(y)− 1)

2 Using σ(x) = 2 and σ(y) ≥ 1:

(L[x] + 1 < L[y]) ∨ (L[x] > L[y])

3 Now strong enough to imply L[y] 6= L[x] + 1
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Pure Variables

Jx = y −→ y = xK
⇐⇒ Jx = yK −→ Jy = xK
⇐⇒ M [L[x]] = M [L[y]] −→ M [L[y]] = M [L[x]] .

Unnecessary burden for the array decision procedure!

Should have done:
x = y −→ y = x
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Pure Variables

Obvious idea:

if the address of a variable x is not referred to,
translate it to a new variable Υx instead of M [L[x]]
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Partitioning the Memory

Observation: the run time of a decision procedure for array logic
depends on the number of different expressions that are used to
index a particular array
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Example

∗p = 1 ∧ ∗q = 1

This is
M [Υp] = 1 ∧M [Υq] = 1

p and q might alias

But there is no reason why they have to!

Let’s assume they don’t!
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Partitioning the Memory

We partition M into M1 and M2:

M1[Υp] = 1 ∧M2[Υq] = 1

This increases the number of array variables

But: the number of different indices per array decreases!

Typically improves performance
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Partitioning the Memory

Cannot always be applied:

p = q −→ ∗p = ∗q

Obviously valid

If we partition as before, the translated formula is no longer
valid:

Υp = Υq −→ M1[Υp] = M2[Υq]
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A Partitioning Heuristic

Deciding if the optimization is applicable is in general as hard
as deciding ϕ itself

→ Do an approximation based on a syntactic test

Definition

Two pointer expressions p and q are related if both p and q are
used inside the same relational expression

Write p ≈ q for TC related

Partition according to ≈!
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