Pointers
Chapter 8

Decision Procedures
An Algorithmic Point of View

D.Kroening O.Strichman Revision 1.0

© Introduction
@ Pointers and Their Applications
@ Dynamic Memory Allocation
@ Analysis of Programs with Pointers
© A Simple Pointer Logic
@ Syntax
@ Semantics
@ Axiomatization of the Memory Model
@ Adding Structure Types
© Modeling
o Lists
@ Trees
@ Using the Semantic Translation
@ Applying the Memory Model Axioms
@ Pure Variables
@ Partitioning the Memory

Decision Procedures — Pointers 2

Pointers and Their Applications

Pointer: a program variable that refers to some other program
construct

This other construct may be
@ another variable, including a pointer,

@ a function or method.

Decision Procedures — Pointers 3

Motivation

@ Pointers to other variables allow code fragments
to operate on different sets of data

@ This avoids inefficient copying of data

@ Pointers enable dynamic data structures

e But: Many bugs relate to the (ab-)use of pointers

Decision Procedures — Pointers 4

Implementation

@ Memory cells of a computer have addresses,
i.e., each cell has a unique number

@ The value of a pointer is such a number

e memory model: the way the memory cells are addressed

Decision Procedures — Pointers 5

Formalization

Definition (Our Memory Model)

@ Set of addresses A is a subinterval of the integers
{0,...,N —1}

o Each address corresponds to a memory cell that is able to
store one data word.

@ The set of data words is denoted by D.
o Memory valuation M : A — D

(this is a continuous, uniform address space)

Decision Procedures — Pointers 6

Arrays and Structs

A variable may require more than one data word to be stored in
memory

Examples:
@ structs,
@ arrays,

@ double-precision floating-point

Decision Procedures — Pointers 7

Arrays and Structs

A variable may require more than one data word to be stored in
memory

Examples:
@ structs,
@ arrays,

@ double-precision floating-point

Let o(v) with v € V' denote the size (in data words) of v.

Decision Procedures — Pointers 7

The Memory Layout

Let V denote the set of variables.

Definition (memory layout)

A memory layout L : V — A is a mapping from V' to an address
A. The address of v € V' is also called the memory location of v.

@ The memory locations of the statically allocated variables are
usually non-overlapping

@ The memory layout is not necessarily continuous
(e.g., due to alignment restrictions)

Decision Procedures — Pointers 8

The Memory Layout: Example

int var_a,

var_Db,

struct { int x;
int arrayl[4];
int xp = &var_c;

int main ()
*p=100;

Decision Procedures — Pointers

{

int y;

var_c;

}S;

var_a

var b

var_c

S.x

S.y

array[0]

array([1l]

arrayl[2]

array|[3]

P

O o I o U W NP O

Dynamic Memory Allocation

@ There is an area of memory (called heap)
for objects that are created at run time

@ A library maintains a list of the memory regions that are
unused

@ Some function allocates a memory region of a given size and
returns a pointer to it

e malloc() in C,
e new in C++, C#, and Java.

Decision Procedures — Pointers 10

Program analysis tools often need to reason about pointers

void f (int *sum) {
*sum = 0;

for (i=0; 1<10; 1i++)
*sum = xsum + arrayl[i];

Decision Procedures — Pointers 11

Example from Program Analysis

Program analysis tools often need to reason about pointers

void f (int *sum) {
*sum = 0;

for (i=0; 1<10; 1i++)
*sum = xsum + arrayl[i];

@ This program does not obey the obvious specification
if the address held by sum is equal to the address of i

@ Aliasing not anticipated by the programmer is a common
source of problems

Decision Procedures — Pointers 11

A Simple Pointer Logic

Definition (Pointer Logic)

Syntax:
formula : formula A formula | —formula | (formula) | atom
atom : pointer = pointer | term = term |
pointer < pointer | term < term
pointer : pointer — identifier | pointer + term | (pointer) |
&identifier | & * pointer | * pointer | NULL
term : identifier | * pointer | term op term | (term) |
integer — constant | identifier [term |
op : +|—
Warning: = is equality here, not assignment

Decision Procedures — Pointers 12

Example

Let p, ¢ denote pointer identifiers, and let 7, 7 denote integer
identifiers.

The following formulas are well-formed according to the grammar:

@ x(p+i) =1,
® #(p+xp) =0,
@ p=qgAx*xp=2>5,
@ xkkxxp =1,
e p<gq.

Decision Procedures — Pointers 13

Example

The following formulas are not permitted by the grammar:
° p+i,

p=1,

*(p+ q),

x1 =1

p < 1.

Decision Procedures — Pointers 14

Semantics

@ We define the semantics by referring to a specific memory
layout L and a specific memory valuation M.

@ Pointer logic formulas are predicates on M, L pairs

@ We obtain a reduction to integer arithmetic and array logic

Decision Procedures — Pointers 15

Semantics

We define a semantics using the function

[[]l:Lp— Lp

Lp: language of pointer expressions
Lp: expressions over variables with values from D

Decision Procedures — Pointers 16

Semantics

Defined recursively.

Boolean connectives:

Predicates:

Decision Procedures — Pointers

[fi A fo]
[-£1

tl]] < [[tgﬂ

L] AL2]
= -7

where p1, po are pointer expressions
where pi1, po are pointer expressions
where t1, t> are terms
where ¢, to are terms

17

Semantics

Non-pointer terms:

[v] = MIL[v]]
[ty op EQ% = [t1] op [t2]
[vlt]] = M][L[v]+ []]

Decision Procedures — Pointers

where v € V' is a variable with o(v) =1
where ¢, to are terms

where ¢ is an integer constant

where v is an array identifier, ¢ is a term

18

Semantics

Pointer-related expressions:

[pl = MI[L[p]] where pis a pointer identifier
[p+t] = [p]+[t] where pisa pointer expression, ¢ is a term
[&v] = Lv] where v € V' is a variable
[&=«p] = [p] where p is a pointer expression
[NULL] = 0
[#*p] = M][[p]] where pis a pointer expression

Decision Procedures — Pointers 19

@ A pointer p points to a variable x if M[L|p|| = L[z]

@ Shorthand: p — z for xp = z

Warning: the meaning p + 7 does not depend on the type of p

Decision Procedures — Pointers 20

Example I

Let a be an array identifier:

*((&a) +1) = a[l]

The definition expands as follows:

[+((&a) +1) = a[l]]

Decision Procedures — Pointers 21

Example I

Let a be an array identifier:

*((&a) +1) = a[l]

The definition expands as follows:

[«((ka) +1) = a[l]l == [x((&a)+ D] = [a[1]]

Decision Procedures — Pointers 21

Example I

Let a be an array identifier:

*((&a) +1) = a[l]

The definition expands as follows:

[«((ka) +1) = a[l]l == [x((&a)+ D] = [a[1]]
& M[[(&a) +1]] = M[L[a] + [1]]

Decision Procedures — Pointers 21

Example I

Let a be an array identifier:

*((&a) +1) = a[l]

The definition expands as follows:

[((&a) +1) = a[l]l = [«((&a)+1)] = [a[1]
= M[[(&a) +1]] = M[L[a] + [1]]
—

M{[&a] + [1]] = M[L[a] + 1]

Decision Procedures — Pointers 21

Example I

Let a be an array identifier:

*((&a) +1) = a[l]

The definition expands as follows:

[((&a) +1) = a[l]l = [«((&a)+1)] = [a[1]
= M[[(&a) +1]] = M[L[a] + [1]]
< M([[&a] + [1]] = M[L[a] + 1]
< M][Lla] +1] = M[L[a] + 1]

The last formula is obviously valid.

Decision Procedures — Pointers 21

Example 11

The translated formula must evaluate to true for any L and M

The following formula is not valid:

xp=1-—uz=1

For p # &, this formula evaluates to false.

Decision Procedures — Pointers 22

Axiomatization of the Memory Model

@ It is possible to exploit assumptions made about the memory
model.

@ Depends highly on the architecture!

@ Here: we formalize properties that most architectures comply
with.

Decision Procedures — Pointers 23

Example

On most architectures, the following two formulas are valid:

@ &z #NULL
Q &x # &y

(1) translates into L[z] # 0 and relies on the fact that no object
has address 0.

(2) relies on non-overlapping addresses

Decision Procedures — Pointers 24

Memory Axiom 1

Memory Model Axiom (“No object has address 07)

YveV. Lv] #0

Decision Procedures — Pointers 25

Overlapping Objects

How do we address (2)?

Suggestion:

V’Ul,'l)g eV.un 7é Vy — L[Ul] 7& L[UQ]

Decision Procedures — Pointers 26

Memory Axioms 2 and 3

The following two conditions together are stronger:
Memory Model Axiom (“Objects have size at least one”)

YoeV.ov)>1

Memory Model Axiom (“Objects do not overlap”)

Yoi,v9 € V. vy # vg — {L[’Ul],. . .,L[’Ul] +U(U1) = 1} N
{L[UQ], .. .,L[UQ] -I-O'(UQ) — 1} - @ .

Decision Procedures — Pointers 27

Some code relies on additional, architecture-specific guarantees,
e.g.,
@ byte ordering
@ endianness,
@ alignment,
°

structure layout.

Some program analysis tools allow adding such rules.

Decision Procedures — Pointers

28

Structure Types

@ Convenient way to implement data structures

@ We add this as a syntactic extension

@ Notation: s.f to denote the value of the field f in the
structure s

Decision Procedures — Pointers 29

Mapping to Array Types

@ Each field of the structure is assigned a unique offset: o(f)
@ Meaning of s.f:

s.f = x((&s)+o(f))

@ Following PASCAL and ANSI-C syntax:

p=>f = (p)f

@ Adopted from separation logic:

x(p+0)=a A
p—a,bc... = x(p+1)=b A
x(p+2)=c

Decision Procedures — Pointers 30

Modeling Lists

@ Simplest dynamically allocated data structure

@ Realized by means of a structure type that contains fields for
a next pointer

Decision Procedures — Pointers 31

List Example

p"7t7fefxf7t7

p — ’t77 P1
AN pr— €, pa
N p2— X, p3
A p3— t’, NULL.

Decision Procedures — Pointers 32

List Example

Define a recursive shorthand for the i-th member of a list:

list-elem(p,0) = p,
list-elem(p,i) = list-elem(p,i —1)=>n fori>1

We use 'n' as the next pointer field.

Now define the shorthand list(p, [):

list(p,l) = list-elem(p,!) = NULL

Decision Procedures — Pointers 33

Cyclic Lists

A linked list is cyclic if the pointer of the last element points to the

first one:
p% 7t7 f 7e7 f 7X7 f 7t7

Decision Procedures — Pointers 34

Cyclic Lists

A linked list is cyclic if the pointer of the last element points to the

first one:
p% 7t7 f 7e7 f 7X7 f 7t7

Would this work?

my-list(p,l) = list-elem(p,l) =p .

Decision Procedures — Pointers 34

Cyclic Lists

Unfortunately, the following satisfies my-list(p, 4):

p*» 7t7

— need to rule out sharing

Decision Procedures — Pointers 35

Cyclic Lists

Define a shorthand ‘overlap’ as follows:
overlap(p,q) = p=qV p+l=qVp=qg+1
Use to state that all list elements are pairwise disjoint:
list-disjoint(p,0) = TRUE,

list-disjoint(p,l) = list-disjoint(p,l — 1)A
V0 < i < 1 — 1. —overlap(list-elem(p, i), list-elem(p, 1 — 1))

Grows quadratically in /!

Decision Procedures — Pointers 36

p
|
5/\
T
3/“ 81010
r_/
11010 41010

Goal: model binary search tree
@ Pointer to the left-hand child: [
@ Pointer to the right-hand child: r

Decision Procedures — Pointers 37

Trees

Idea:
(n # NULL — n.l->z < n.z)

A (n.or #NULL — n.r—>z > n.x) .

Decision Procedures — Pointers 38

Trees

Idea:
(n # NULL — n.l->z < n.z)

A (n.or #NULL — n.r—>z > n.x) .

Not strong enough for O(h) lookup!

Decision Procedures — Pointers 38

Transitive Closure

Let us first define the transitive closure of a relation R:

TCr(p.a) = R(pq)
TCr(p,q) = 3. TC ' (p.p) AR, q)
TC(p,q) = 3i. TCR(p,q)

Decision Procedures — Pointers 39

Trees

Now define a predicate tree-reach(p, q):

tree-reach(p,q) = p# NULL A g # NULLA
(p=qVp>l=qVp>r=gq)

Use the transitive closure:

tree-reach*(p, q) <— T Cree-reach(p,q)

Decision Procedures — Pointers 40

Trees

New definition:

(Vp. tree-reach*(n.l,p) — p—=>x < n.x)
A (Vp. tree-reach*(n.r,p) — p—=>z > n.z) .

Decision Procedures — Pointers 41

Using the Semantic Translation

[-] is a decision procedure!

@ Define ¢ = [¢]
@ Pass ¢’ to procedure for integers and arrays

Decision Procedures — Pointers 42

Example I

Let = be a variable, and p be a pointer.

p=&xANr=1—x*xp=1

Decision Procedures — Pointers 43

Example I

Let = be a variable, and p be a pointer.

p=&xANr=1—x*xp=1

Use semantic definition:
[p=&xANz=1—xp=1]
— [p=&z]A[z=1] — [*p =1]
= [pl=[&]A[z]=1—[+p] =1
— MILIp]] = Lla] A MIL[a]] = 1 — M[M[L[p]] = 1.

The last formula is obviously valid.

Decision Procedures — Pointers 43

Example 11

[p— 2 — p=&a]

[p— z] — [p= &2]

[xp = 2] — [p] = [&2]

[+p] = [z] — M[L[p]] = L[x]

M[M[L[p]]] = M[L[z]] — M[L[p]] = L[]

rree

Decision Procedures — Pointers 44

Example 11

[p— 2 — p=&a]
= [p—z] —[p=&a]
= [xp=2] — [p] = [&2]
<= [*p] = [2] — MIL[p]] = L[z]
< MI[MIL[p]]] = M[L[z]] — MIL[p]] = L]

Counterexample:

Lipl =1, L[z] = 2, M[1] = 3, M[2] = 10, M[3] = 10

311010
0o 1 2 3
poow

Decision Procedures — Pointers 44

Applying the Memory Model Axioms

What if the formula relies on a memory model axiom?

Example:
o(z) =2 — &y # &z +1

The semantic translation yields:

o(x) = 2 — Lly] # Ll] +1

This needs the no-overlapping axiom:

{L[z],...,Llx] +o(x) =1} N {Llyl,..., L[y + o(y) — 1} =0

Decision Procedures — Pointers 45

Applying the Memory Model Axioms

© Transform into linear arithmetic over the integers as follows:

(Llz] +o(x) =1 < Lly]) V (L{z] > L]y] + o(y) = 1)

@ Usingo(z) =2and o(y) > 1:

(Llz] +1 < Ly]) v (L[z] > L[y])

© Now strong enough to imply L[y| # L{z| + 1

Decision Procedures — Pointers 46

Pure Variables

[t =y —y=2]
= [r=y] —y=1]
< M]JL[z]] = M[L[y]] — MIL[y]] = M[L[z]] .

Unnecessary burden for the array decision procedure!

Decision Procedures — Pointers 47

Pure Variables

[t =y —y=2]
= [r=y] —y=1]
< M]JL[z]] = M[L[y]] — MIL[y]] = M[L[z]] .

Unnecessary burden for the array decision procedure!

Should have done:

Decision Procedures — Pointers 47

Pure Variables

Obvious idea:

if the address of a variable x is not referred to,
translate it to a new variable T, instead of M|[L|x]]

Decision Procedures — Pointers 48

Partitioning the Memory

Observation: the run time of a decision procedure for array logic
depends on the number of different expressions that are used to
index a particular array

Decision Procedures — Pointers 49

Example

*xp=1Axqg=1
This is

MIY,] = 1A MY, =1

@ p and ¢ might alias

@ But there is no reason why they have to!

@ Let's assume they don't!

Decision Procedures — Pointers 50

Partitioning the Memory

We partition M into M; and Ms:

]\/fl[Tp} =1A MQ[T(]] =1

@ This increases the number of array variables
@ But: the number of different indices per array decreases!

o Typically improves performance

Decision Procedures — Pointers 51

Partitioning the Memory

Cannot always be applied:

p:q%*p:*q

@ Obviously valid

o If we partition as before, the translated formula is no longer
valid:
Tp=Tq — M[Y,] = M[T]

Decision Procedures — Pointers 52

A Partitioning Heuristic

@ Deciding if the optimization is applicable is in general as hard
as deciding ¢ itself

— Do an approximation based on a syntactic test

Decision Procedures — Pointers 53

A Partitioning Heuristic

@ Deciding if the optimization is applicable is in general as hard
as deciding ¢ itself

— Do an approximation based on a syntactic test

Definition

Two pointer expressions p and ¢ are related if both p and ¢ are
used inside the same relational expression

Write p ~ ¢ for TC o|5ted

Partition according to ~!

Decision Procedures — Pointers 53

	Introduction
	Pointers and Their Applications
	Dynamic Memory Allocation
	Analysis of Programs with Pointers

	A Simple Pointer Logic
	Syntax
	Semantics
	Axiomatization of the Memory Model
	Adding Structure Types

	Modeling
	Lists
	Trees

	Using the Semantic Translation
	Applying the Memory Model Axioms
	Pure Variables
	Partitioning the Memory

