Pointers

Chapter 8

Decision Procedures

 An Algorithmic Point of View
D. Kroening
O.Strichman

Outline

(1) Introduction

- Pointers and Their Applications
- Dynamic Memory Allocation
- Analysis of Programs with Pointers
(2) A Simple Pointer Logic
- Syntax
- Semantics
- Axiomatization of the Memory Model
- Adding Structure Types
(3) Modeling
- Lists
- Trees

4) Using the Semantic Translation

- Applying the Memory Model Axioms
- Pure Variables
- Partitioning the Memory

Pointers and Their Applications

Pointer: a program variable that refers to some other program construct

This other construct may be

- another variable, including a pointer,
- a function or method.

Motivation

- Pointers to other variables allow code fragments to operate on different sets of data
- This avoids inefficient copying of data
- Pointers enable dynamic data structures
- But: Many bugs relate to the (ab-)use of pointers

Implementation

- Memory cells of a computer have addresses, i.e., each cell has a unique number
- The value of a pointer is such a number
- memory model: the way the memory cells are addressed

Definition (Our Memory Model)

- Set of addresses A is a subinterval of the integers $\{0, \ldots, N-1\}$
- Each address corresponds to a memory cell that is able to store one data word.
- The set of data words is denoted by D.
- Memory valuation $M: A \longrightarrow D$
(this is a continuous, uniform address space)

Arrays and Structs

A variable may require more than one data word to be stored in memory

Examples:

- structs,
- arrays,
- double-precision floating-point

Arrays and Structs

A variable may require more than one data word to be stored in memory

Examples:

- structs,
- arrays,
- double-precision floating-point

Let $\sigma(v)$ with $v \in V$ denote the size (in data words) of v.

The Memory Layout

Let V denote the set of variables.

Definition (memory layout)

A memory layout $L: V \longrightarrow A$ is a mapping from V to an address A. The address of $v \in V$ is also called the memory location of v.

- The memory locations of the statically allocated variables are usually non-overlapping
- The memory layout is not necessarily continuous (e.g., due to alignment restrictions)

The Memory Layout: Example

```
int var_a, var_b, var_c;
struct { int x; int y; } S;
int array[4];
int *p = &var_c;
int main() {
        * p=100;
}
```

\longrightarrow| var_a | 0 |
| :--- | :--- |
| var_b | 1 |
| var_c | 2 |
| S.x | 3 |
| S.y | 4 |
| array [0] | 5 |
| array [1] | 6 |
| array [2] | 7 |
| array [3] | 8 |
| P | 9 |

- There is an area of memory (called heap) for objects that are created at run time
- A library maintains a list of the memory regions that are unused
- Some function allocates a memory region of a given size and returns a pointer to it
- malloc() in C,
- new in $\mathrm{C}++, \mathrm{C} \#$, and Java.

Example from Program Analysis

Program analysis tools often need to reason about pointers

```
void f(int *sum) {
    *sum = 0;
    for(i=0; i<10; i++)
        *sum = *sum + array[i];
}
```


Example from Program Analysis

Program analysis tools often need to reason about pointers

```
void f(int *sum) {
    *sum = 0;
    for(i=0; i<10; i++)
        *sum = *sum + array[i];
}
```

- This program does not obey the obvious specification if the address held by sum is equal to the address of i
- Aliasing not anticipated by the programmer is a common source of problems

A Simple Pointer Logic

Definition (Pointer Logic)

Syntax:

$$
\text { formula }: \text { formula } \wedge \text { formula } \mid \neg \text { formula } \mid(\text { formula }) \mid \text { atom }
$$

$$
\text { atom }: \text { pointer }=\text { pointer } \mid \text { term }=\text { term } \mid
$$

$$
\text { pointer }<\text { pointer } \mid \text { term }<\text { term }
$$

$$
\text { pointer : pointer }- \text { identifier } \mid \text { pointer }+ \text { term } \mid(\text { pointer }) \mid
$$

$$
\text { \&identifier } \mid \& * \text { pointer } \mid * \text { pointer } \mid \text { NULL }
$$

$$
\text { term }: \text { identifier } \mid * \text { pointer } \mid \text { term op term } \mid(\text { term }) \mid
$$

$$
\text { integer - constant | identifier }[\text { term }]
$$

$$
o p:+\mid-
$$

Warning: = is equality here, not assignment

Example

Let p, q denote pointer identifiers, and let i, j denote integer identifiers.

The following formulas are well-formed according to the grammar:

- $*(p+i)=1$,
- $*(p+* p)=0$,
- $p=q \wedge * p=5$,
- $* * * * * p=1$,
- $p<q$.

Example

The following formulas are not permitted by the grammar:

- $p+i$,
- $p=i$,
- * $(p+q)$,
- $* 1=1$,
- $p<i$.

Semantics

- We define the semantics by referring to a specific memory layout L and a specific memory valuation M.
- Pointer logic formulas are predicates on M, L pairs
- We obtain a reduction to integer arithmetic and array logic

Semantics

We define a semantics using the function

$$
\llbracket \cdot \rrbracket: \mathcal{L}_{P} \longrightarrow \mathcal{L}_{D}
$$

\mathcal{L}_{P} : language of pointer expressions
\mathcal{L}_{D} : expressions over variables with values from D

Semantics

Defined recursively.
Boolean connectives:

$$
\begin{aligned}
\llbracket f_{1} \wedge f_{2} \rrbracket & =\llbracket f_{1} \rrbracket \wedge \llbracket f_{2} \rrbracket \\
\llbracket \neg f \rrbracket & =\neg \llbracket f \rrbracket
\end{aligned}
$$

Predicates:

$$
\begin{array}{rll}
\llbracket p_{1}=p_{2} \rrbracket & =\llbracket p_{1} \rrbracket=\llbracket p_{2} \rrbracket & \text { where } p_{1}, p_{2} \text { are pointer expressions } \\
\llbracket p_{1}<p_{2} \rrbracket & =\llbracket p_{1} \rrbracket<\llbracket p_{2} \rrbracket & \text { where } p_{1}, p_{2} \text { are pointer expressions } \\
\llbracket t_{1}=t_{2} \rrbracket & =\llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket & \text { where } t_{1}, t_{2} \text { are terms } \\
\llbracket t_{1}<t_{2} \rrbracket & =\llbracket t_{1} \rrbracket<\llbracket t_{2} \rrbracket & \text { where } t_{1}, t_{2} \text { are terms }
\end{array}
$$

Semantics

Non-pointer terms:

$$
\begin{aligned}
\llbracket v \rrbracket & =M[L[v]] & & \text { where } v \in V \text { is a variable with } \sigma(v)=1 \\
\llbracket t_{1} \text { op } t_{2} \rrbracket & =\llbracket t_{1} \rrbracket o p \llbracket t_{2} \rrbracket & & \text { where } t_{1}, t_{2} \text { are terms } \\
\llbracket c \rrbracket & =c & & \text { where } c \text { is an integer constant } \\
\llbracket v[t] \rrbracket & =M[L[v]+\llbracket t \rrbracket] & & \text { where } v \text { is an array identifier, } t \text { is a term }
\end{aligned}
$$

Semantics

Pointer-related expressions:

$$
\begin{aligned}
\llbracket p \rrbracket & =M[L[p]] & & \text { where } p \text { is a pointer identifier } \\
\llbracket p+t \rrbracket & =\llbracket p \rrbracket+\llbracket t \rrbracket & & \text { where } p \text { is a pointer expression, } t \text { is a term } \\
\llbracket \& v \rrbracket & =L[v] & & \text { where } v \in V \text { is a variable } \\
\llbracket \& * p \rrbracket & =\llbracket p \rrbracket & & \text { where } p \text { is a pointer expression } \\
\llbracket N U L L \rrbracket & =0 & & \\
\llbracket * p \rrbracket & =M[\llbracket p \rrbracket \rrbracket & & \text { where } p \text { is a pointer expression }
\end{aligned}
$$

Notation

- A pointer p points to a variable x if $M[L[p]]=L[x]$
- Shorthand: $p \hookrightarrow z$ for $* p=z$

Warning: the meaning $p+i$ does not depend on the type of p

Example I

Let a be an array identifier:

$$
*((\& a)+1)=a[1]
$$

The definition expands as follows:

$$
\llbracket *((\& a)+1)=a[1] \rrbracket
$$

Example I

Let a be an array identifier:

$$
*((\& a)+1)=a[1]
$$

The definition expands as follows:

$$
\llbracket *((\& a)+1)=a[1] \rrbracket \quad \Longleftrightarrow \quad \llbracket *((\& a)+1) \rrbracket=\llbracket a[1] \rrbracket
$$

Example I

Let a be an array identifier:

$$
*((\& a)+1)=a[1]
$$

The definition expands as follows:

$$
\begin{aligned}
\llbracket *((\& a)+1)=a[1] \rrbracket & \Longleftrightarrow \llbracket *((\& a)+1) \rrbracket=\llbracket a[1] \rrbracket \\
& \Longleftrightarrow M[\llbracket(\& a)+1 \rrbracket]=M[L[a]+\llbracket 1 \rrbracket]
\end{aligned}
$$

Example I

Let a be an array identifier:

$$
*((\& a)+1)=a[1]
$$

The definition expands as follows:

$$
\begin{aligned}
\llbracket *((\& a)+1)=a[1] \rrbracket & \Longleftrightarrow \llbracket *((\& a)+1) \rrbracket=\llbracket a[1] \rrbracket \\
& \Longleftrightarrow M[\llbracket(\& a)+1 \rrbracket]=M[L[a]+\llbracket 1 \rrbracket] \\
& \Longleftrightarrow M[\llbracket \& a \rrbracket+\llbracket 1 \rrbracket]=M[L[a]+1]
\end{aligned}
$$

Example I

Let a be an array identifier:

$$
*((\& a)+1)=a[1]
$$

The definition expands as follows:

$$
\begin{aligned}
\llbracket *((\& a)+1)=a[1] \rrbracket & \Longleftrightarrow \llbracket *((\& a)+1) \rrbracket=\llbracket a[1] \rrbracket \\
& \Longleftrightarrow M[\llbracket(\& a)+1 \rrbracket]=M[L[a]+\llbracket 1 \rrbracket] \\
& \Longleftrightarrow M[\llbracket \& a \rrbracket+\llbracket 1 \rrbracket]=M[L[a]+1] \\
& \Longleftrightarrow M[L[a]+1]=M[L[a]+1]
\end{aligned}
$$

The last formula is obviously valid.

Example II

The translated formula must evaluate to true for any L and M !

The following formula is not valid:

$$
* p=1 \longrightarrow x=1
$$

For $p \neq \& x$, this formula evaluates to false.

Axiomatization of the Memory Model

- It is possible to exploit assumptions made about the memory model.
- Depends highly on the architecture!
- Here: we formalize properties that most architectures comply with.

Example

On most architectures, the following two formulas are valid:
(1) $\& x \neq$ NULL
(2) $\& x \neq \& y$
(1) translates into $L[x] \neq 0$ and relies on the fact that no object has address 0 .
(2) relies on non-overlapping addresses

Memory Axiom 1

Memory Model Axiom ("No object has address 0")

$$
\forall v \in V . L[v] \neq 0
$$

Overlapping Objects

How do we address (2)?

Suggestion:

$$
\forall v_{1}, v_{2} \in V . v_{1} \neq v_{2} \longrightarrow L\left[v_{1}\right] \neq L\left[v_{2}\right]
$$

Memory Axioms 2 and 3

The following two conditions together are stronger:
Memory Model Axiom ("Objects have size at least one")

$$
\forall v \in V . \sigma(v) \geq 1
$$

Memory Model Axiom ("Objects do not overlap")

$$
\begin{aligned}
\forall v_{1}, v_{2} \in V . v_{1} \neq v_{2} \longrightarrow & \left\{L\left[v_{1}\right], \ldots, L\left[v_{1}\right]+\sigma\left(v_{1}\right)-1\right\} \cap \\
& \left\{L\left[v_{2}\right], \ldots, L\left[v_{2}\right]+\sigma\left(v_{2}\right)-1\right\}=\emptyset .
\end{aligned}
$$

More?

Some code relies on additional, architecture-specific guarantees, e.g.,

- byte ordering
- endianness,
- alignment,
- structure layout.

Some program analysis tools allow adding such rules.

Structure Types

- Convenient way to implement data structures
- We add this as a syntactic extension
- Notation: s.f to denote the value of the field f in the structure s

Mapping to Array Types

- Each field of the structure is assigned a unique offset: $o(f)$
- Meaning of $s . f$:

$$
s . f \doteq \quad *((\& s)+o(f))
$$

- Following PASCAL and ANSI-C syntax:

$$
p \rightarrow f \quad \doteq \quad(* p) . f
$$

- Adopted from separation logic:

$$
p \hookrightarrow a, b, c, \ldots \quad \doteq \quad \begin{aligned}
& *(p+0)=a \\
& *(p+1)=b \\
& * \\
& *(p+2)=c
\end{aligned} \ldots .
$$

Modeling Lists

- Simplest dynamically allocated data structure
- Realized by means of a structure type that contains fields for a next pointer

List Example

$$
\begin{array}{ccc}
& p \hookrightarrow & ' \mathrm{t} ', p_{1} \\
\wedge & p_{1} \hookrightarrow & ' \mathrm{e}, p_{2} \\
\wedge & p_{2} \hookrightarrow & ' \mathrm{x} ', p_{3} \\
\wedge & p_{3} \hookrightarrow & ' \mathrm{t}, \mathrm{NULL} .
\end{array}
$$

List Example

Define a recursive shorthand for the i-th member of a list:

$$
\begin{aligned}
\operatorname{list-elem}(p, 0) & \doteq p \\
\operatorname{list-elem}(p, i) & \doteq \operatorname{list-elem}(p, i-1) \rightarrow n \quad \text { for } i \geq 1
\end{aligned}
$$

We use ' n ' as the next pointer field.

Now define the shorthand $\operatorname{list}(p, l)$:

$$
\operatorname{list}(p, l) \doteq \operatorname{list-elem}(p, l)=\text { NULL }
$$

Cyclic Lists

A linked list is cyclic if the pointer of the last element points to the first one:

Cyclic Lists

A linked list is cyclic if the pointer of the last element points to the first one:

Would this work?

$$
\text { my-list }(p, l) \doteq \text { list-elem }(p, l)=p
$$

Cyclic Lists

Unfortunately, the following satisfies my-list $(p, 4)$:

\rightarrow need to rule out sharing

Cyclic Lists

Define a shorthand 'overlap' as follows:

$$
\operatorname{overlap}(p, q) \doteq p=q \vee p+1=q \vee p=q+1
$$

Use to state that all list elements are pairwise disjoint:

```
list-disjoint(p,0) \doteq}\mathrm{ TRUE,
list-disjoint (p,l) \doteq list-disjoint (p,l-1)^
    \forall0\leqi<l-1. \negoverlap(list-elem ( }p,i)\mathrm{ , list-elem (p,l-1))
```

Grows quadratically in l !

Trees

Goal: model binary search tree

- Pointer to the left-hand child: l
- Pointer to the right-hand child: r

Trees

Idea:

$$
\begin{array}{ll}
& (n . l \neq \text { NULL } \longrightarrow n . l->x<n \cdot x) \\
\wedge & (n \cdot r \neq \mathrm{NULL} \longrightarrow n \cdot r \rightarrow x>n \cdot x) .
\end{array}
$$

Trees

Idea:

$$
\begin{array}{ll}
& (n \cdot l \neq \mathrm{NULL} \longrightarrow n \cdot l->x<n \cdot x) \\
\wedge & (n \cdot r \neq \mathrm{NULL} \longrightarrow n \cdot r \rightarrow x>n \cdot x) .
\end{array}
$$

Not strong enough for $O(h)$ lookup!

Transitive Closure

Let us first define the transitive closure of a relation R :

$$
\begin{aligned}
T C_{R}^{1}(p, q) & \doteq R(p, q) \\
T C_{R}^{i}(p, q) & \doteq \exists p^{\prime} \cdot T C_{R}^{i-1}\left(p, p^{\prime}\right) \wedge R\left(p^{\prime}, q\right) \\
T C(p, q) & \doteq \exists i . T C_{R}^{i}(p, q)
\end{aligned}
$$

Trees

Now define a predicate tree-reach (p, q) :

$$
\begin{aligned}
\operatorname{tree}-\operatorname{reach}(p, q) \doteq & p \neq \mathrm{NULL} \wedge q \neq \mathrm{NULL} \wedge \\
& (p=q \vee p \rightarrow l=q \vee p \rightarrow r=q)
\end{aligned}
$$

Use the transitive closure:

$$
\text { tree-reach* }(p, q) \Longleftrightarrow \mathrm{TC}_{\text {tree-reach }(p, q)}
$$

Trees

New definition:

$$
\begin{aligned}
& (\forall p . \text { tree-reach* }(n . l, p) \longrightarrow p->x<n . x) \\
\wedge & (\forall p . \text { tree-reach* }(n . r, p) \longrightarrow p->x>n \cdot x)
\end{aligned}
$$

Using the Semantic Translation

$\llbracket \cdot \rrbracket$ is a decision procedure!
(1) Define $\varphi^{\prime} \doteq \llbracket \varphi \rrbracket$
(2) Pass φ^{\prime} to procedure for integers and arrays

Example I

Let x be a variable, and p be a pointer.

$$
p=\& x \wedge x=1 \longrightarrow * p=1
$$

Example I

Let x be a variable, and p be a pointer.

$$
p=\& x \wedge x=1 \longrightarrow * p=1
$$

Use semantic definition:

$$
\begin{aligned}
\llbracket p= & \& x \wedge x=1 \longrightarrow * p=1 \rrbracket \\
& \Longleftrightarrow \llbracket p=\& x \rrbracket \wedge \llbracket x=1 \rrbracket \longrightarrow \llbracket * p=1 \rrbracket \\
& \Longleftrightarrow \llbracket p \rrbracket=\llbracket \& x \rrbracket \wedge \llbracket x \rrbracket=1 \longrightarrow \llbracket * p \rrbracket=1 \\
& \Longleftrightarrow M[L[p]]=L[x] \wedge M[L[x]]=1 \longrightarrow M[M[L[p]]]=1
\end{aligned}
$$

The last formula is obviously valid.

Example II

$$
\begin{aligned}
\llbracket p \hookrightarrow & x \longrightarrow p=\& x \rrbracket \\
& \Longleftrightarrow \llbracket p \hookrightarrow x \rrbracket \longrightarrow \llbracket p=\& x \rrbracket \\
& \Longleftrightarrow \llbracket * p=x \rrbracket \longrightarrow \llbracket p \rrbracket=\llbracket \& x \rrbracket \\
& \Longleftrightarrow \llbracket * p \rrbracket=\llbracket x \rrbracket \longrightarrow M[L[p]]=L[x] \\
& \Longleftrightarrow M[M[L[p]]]=M[L[x]] \longrightarrow M[L[p]]=L[x]
\end{aligned}
$$

Example II

$$
\begin{aligned}
\llbracket p \hookrightarrow & x \longrightarrow p=\& x \rrbracket \\
& \Longleftrightarrow \llbracket p \hookrightarrow x \rrbracket \longrightarrow \llbracket p=\& x \rrbracket \\
& \Longleftrightarrow \llbracket * p=x \rrbracket \longrightarrow \llbracket p \rrbracket=\llbracket \& x \rrbracket \\
& \Longleftrightarrow \llbracket * p \rrbracket=\llbracket x \rrbracket \longrightarrow M[L[p]]=L[x] \\
& \Longleftrightarrow M[M[L[p]]]=M[L[x]] \longrightarrow M[L[p]]=L[x]
\end{aligned}
$$

Counterexample:

$$
L[p]=1, L[x]=2, M[1]=3, M[2]=10, M[3]=10
$$

Applying the Memory Model Axioms

What if the formula relies on a memory model axiom?
Example:

$$
\sigma(x)=2 \longrightarrow \& y \neq \& x+1
$$

The semantic translation yields:

$$
\sigma(x)=2 \longrightarrow L[y] \neq L[x]+1
$$

This needs the no-overlapping axiom:

$$
\{L[x], \ldots, L[x]+\sigma(x)-1\} \cap\{L[y], \ldots, L[y]+\sigma(y)-1\}=\emptyset
$$

Applying the Memory Model Axioms

(1) Transform into linear arithmetic over the integers as follows:

$$
(L[x]+\sigma(x)-1<L[y]) \vee(L[x]>L[y]+\sigma(y)-1)
$$

(2) Using $\sigma(x)=2$ and $\sigma(y) \geq 1$:

$$
(L[x]+1<L[y]) \vee(L[x]>L[y])
$$

(3) Now strong enough to imply $L[y] \neq L[x]+1$

Pure Variables

$$
\begin{aligned}
\llbracket x= & y \longrightarrow y=x \rrbracket \\
& \Longleftrightarrow \llbracket x=y \rrbracket \longrightarrow \llbracket y=x \rrbracket \\
& \Longleftrightarrow M[L[x]]=M[L[y]] \longrightarrow M[L[y]]=M[L[x]] .
\end{aligned}
$$

Unnecessary burden for the array decision procedure!

Pure Variables

$$
\begin{aligned}
\llbracket x= & y \longrightarrow y=x \rrbracket \\
& \Longleftrightarrow \llbracket x=y \rrbracket \longrightarrow \llbracket y=x \rrbracket \\
& \Longleftrightarrow M[L[x]]=M[L[y]] \longrightarrow M[L[y]]=M[L[x]] .
\end{aligned}
$$

Unnecessary burden for the array decision procedure!

Should have done:

$$
x=y \longrightarrow y=x
$$

Pure Variables

Obvious idea:
if the address of a variable x is not referred to, translate it to a new variable Υ_{x} instead of $M[L[x]]$

Partitioning the Memory

Observation: the run time of a decision procedure for array logic depends on the number of different expressions that are used to index a particular array

Example

$$
* p=1 \wedge * q=1
$$

This is

$$
M\left[\Upsilon_{p}\right]=1 \wedge M\left[\Upsilon_{q}\right]=1
$$

- p and q might alias
- But there is no reason why they have to!
- Let's assume they don't!

Partitioning the Memory

We partition M into M_{1} and M_{2} :

$$
M_{1}\left[\Upsilon_{p}\right]=1 \wedge M_{2}\left[\Upsilon_{q}\right]=1
$$

- This increases the number of array variables
- But: the number of different indices per array decreases!
- Typically improves performance

Partitioning the Memory

Cannot always be applied:

$$
p=q \longrightarrow * p=* q
$$

- Obviously valid
- If we partition as before, the translated formula is no longer valid:

$$
\Upsilon_{p}=\Upsilon_{q} \longrightarrow M_{1}\left[\Upsilon_{p}\right]=M_{2}\left[\Upsilon_{q}\right]
$$

A Partitioning Heuristic

- Deciding if the optimization is applicable is in general as hard as deciding φ itself
\rightarrow Do an approximation based on a syntactic test

A Partitioning Heuristic

- Deciding if the optimization is applicable is in general as hard as deciding φ itself
\rightarrow Do an approximation based on a syntactic test

> Definition
> Two pointer expressions p and q are related if both p and q are used inside the same relational expression

Write $p \approx q$ for $T C_{\text {related }}$

Partition according to \approx !

