Gomory Cuts

Chapter 5
Linear Arithmetic

Decision Procedures An Algorithmic Point of View

D.Kroening
O.Strichman

Cutting planes

- Recall that in Branch \& Bound we first solve a relaxed problem
(i.e., no integrality constraints).
- We now study a method for adding cutting planes constraints to the relaxed problem that do not remove integer solutions.
- Specifically, we will see Gomory cuts.

Cutting planes, geometrically.

The dotted line is a cutting plane.

Example: Gomory Cuts

Suppose our input integer linear problem has...

- Integer variables x_{1}, \ldots, x_{3}.
- Lower bounds $1 \leq x_{1}$ and $0.5 \leq x_{2}$.

Example: Gomory Cuts

Suppose our input integer linear problem has...

- Integer variables x_{1}, \ldots, x_{3}.
- Lower bounds $1 \leq x_{1}$ and $0.5 \leq x_{2}$.

After solving the relaxed problem:

- The final tableau of the general simplex algorithm includes the constraint

$$
\begin{equation*}
x_{3}=0.5 x_{1}+2.5 x_{2} \tag{1}
\end{equation*}
$$

Example: Gomory Cuts

Suppose our input integer linear problem has...

- Integer variables x_{1}, \ldots, x_{3}.
- Lower bounds $1 \leq x_{1}$ and $0.5 \leq x_{2}$.

After solving the relaxed problem:

- The final tableau of the general simplex algorithm includes the constraint

$$
\begin{equation*}
x_{3}=0.5 x_{1}+2.5 x_{2} \tag{1}
\end{equation*}
$$

- ... and the solution α is

$$
\left\{x_{3} \mapsto 1.75, x_{1} \mapsto 1, x_{2} \mapsto 0.5\right\}
$$

Example: Gomory Cuts

- Subtracting these values from (1) gives us

$$
\begin{equation*}
x_{3}-1.75=0.5\left(x_{1}-1\right)+2.5\left(x_{2}-0.5\right) . \tag{2}
\end{equation*}
$$

Example: Gomory Cuts

- Subtracting these values from (1) gives us

$$
\begin{equation*}
x_{3}-1.75=0.5\left(x_{1}-1\right)+2.5\left(x_{2}-0.5\right) . \tag{2}
\end{equation*}
$$

- We now wish to rewrite this equation so the left-hand side is an integer:

$$
\begin{equation*}
x_{3}-1=0.75+0.5\left(x_{1}-1\right)+2.5\left(x_{2}-0.5\right) . \tag{3}
\end{equation*}
$$

Example: Gomory Cuts

- The two right-most terms must be positive because 1 and 0.5 are the lower bounds of x_{1} and x_{2}, respectively.
- Since the right-hand side must add up to an integer as well, this implies that

$$
\begin{equation*}
0.75+0.5\left(x_{1}-1\right)+2.5\left(x_{2}-0.5\right) \geq 1 \tag{4}
\end{equation*}
$$

Example: Gomory Cuts

- The two right-most terms must be positive because 1 and 0.5 are the lower bounds of x_{1} and x_{2}, respectively.
- Since the right-hand side must add up to an integer as well, this implies that

$$
\begin{equation*}
0.75+0.5\left(x_{1}-1\right)+2.5\left(x_{2}-0.5\right) \geq 1 \tag{4}
\end{equation*}
$$

- This constraint is unsatisfied by α because

$$
\alpha\left(x_{1}\right)=1, \alpha\left(x_{2}\right)=0.5
$$

Example: Gomory Cuts

- The two right-most terms must be positive because 1 and 0.5 are the lower bounds of x_{1} and x_{2}, respectively.
- Since the right-hand side must add up to an integer as well, this implies that

$$
\begin{equation*}
0.75+0.5\left(x_{1}-1\right)+2.5\left(x_{2}-0.5\right) \geq 1 \tag{4}
\end{equation*}
$$

- This constraint is unsatisfied by α because $\alpha\left(x_{1}\right)=1, \alpha\left(x_{2}\right)=0.5$.
- Hence, this constraint removes the current solution.

Example: Gomory Cuts

- The two right-most terms must be positive because 1 and 0.5 are the lower bounds of x_{1} and x_{2}, respectively.
- Since the right-hand side must add up to an integer as well, this implies that

$$
\begin{equation*}
0.75+0.5\left(x_{1}-1\right)+2.5\left(x_{2}-0.5\right) \geq 1 \tag{4}
\end{equation*}
$$

- This constraint is unsatisfied by α because $\alpha\left(x_{1}\right)=1, \alpha\left(x_{2}\right)=0.5$.
- Hence, this constraint removes the current solution.
- On the other hand, it is implied by the integer system of constraints, and hence cannot remove any integer solution.

Gomory Cuts

- Generalizing this example:
- Upper bounds.
- Both positive and negative coefficients.
- The description that follows is based on
- Integrating Simplex with DPLL(T)

Technical report SRI-CSL-06-01
Dutertre and de Moura (2006).

Gomory Cuts

There are two preliminary conditions for deriving a Gomory cut from a constraint:

- The assignment to the basic variable has to be fractional.
- The assignments to all the nonbasic variables have to correspond to one of their bounds.

Gomory Cuts

- Consider the i-th constraint:

$$
\begin{equation*}
x_{i}=\sum_{x_{j} \in \mathcal{N}} a_{i j} x_{j} \tag{5}
\end{equation*}
$$

where $x_{i} \in \mathcal{B}$.

Gomory Cuts

- Consider the i-th constraint:

$$
\begin{equation*}
x_{i}=\sum_{x_{j} \in \mathcal{N}} a_{i j} x_{j} \tag{5}
\end{equation*}
$$

where $x_{i} \in \mathcal{B}$.

- Let α be the assignment returned by the general simplex algorithm. Thus,

$$
\begin{equation*}
\alpha\left(x_{i}\right)=\sum_{x_{j} \in \mathcal{N}} a_{i j} \alpha\left(x_{j}\right) \tag{6}
\end{equation*}
$$

Gomory Cuts

- Partition the nonbasic variables to
- those that are currently assigned their lower bound, and
- those that are currently assigned their upper bound

$$
\begin{align*}
& J=\left\{j \mid x_{j} \in \mathcal{N} \wedge \alpha\left(x_{j}\right)=l_{j}\right\} \\
& K=\left\{j \mid x_{j} \in \mathcal{N} \wedge \alpha\left(x_{j}\right)=u_{j}\right\} . \tag{7}
\end{align*}
$$

- Subtracting (6) from (5) taking the partition into account yields

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\sum_{j \in J} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K} a_{i j}\left(u_{j}-x_{j}\right) \tag{8}
\end{equation*}
$$

Gomory Cuts

- Let $f_{0}=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$.
- As we assumed that $\alpha\left(x_{i}\right)$ is not an integer then $0<f_{0}<1$.
- We can now rewrite (8) as

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=f_{0}+\sum_{j \in J} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K} a_{i j}\left(u_{j}-x_{j}\right) \tag{9}
\end{equation*}
$$

Note that the left-hand side is an integer.

Gomory Cuts

We now consider two cases.
(Case 1)

- If

$$
\sum_{j \in J} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K} a_{i j}\left(u_{j}-x_{j}\right)>0
$$

then, since the right-hand side must be an integer,

$$
\begin{equation*}
f_{0}+\sum_{j \in J} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K} a_{i j}\left(u_{j}-x_{j}\right) \geq 1 \tag{10}
\end{equation*}
$$

Gomory Cuts

(Still in case 1)

- We now split J and K as follows:

$$
\begin{align*}
J^{+} & =\left\{j \mid j \in J \wedge a_{i j}>0\right\} \\
J^{-} & =\left\{j \mid j \in J \wedge a_{i j}<0\right\} \\
K^{+} & =\left\{j \mid j \in K \wedge a_{i j}>0\right\} \tag{11}\\
K^{-} & =\left\{j \mid j \in K \wedge a_{i j}<0\right\}
\end{align*}
$$

- Gathering only the positive elements in the left-hand side of (10) gives us:

$$
\begin{equation*}
\sum_{j \in J^{+}} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K^{-}} a_{i j}\left(u_{j}-x_{j}\right) \geq 1-f_{0} \tag{12}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\sum_{j \in J^{+}} \frac{a_{i j}}{1-f_{0}}\left(x_{j}-l_{j}\right)-\sum_{j \in K^{-}} \frac{a_{i j}}{1-f_{0}}\left(u_{j}-x_{j}\right) \geq 1 \tag{13}
\end{equation*}
$$

Gomory Cuts

(Case 2)

- If

$$
\sum_{j \in J} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K} a_{i j}\left(u_{j}-x_{j}\right) \leq 0
$$

then again, since the right-hand side must be an integer,

$$
\begin{equation*}
f_{0}+\sum_{j \in J} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K} a_{i j}\left(u_{j}-x_{j}\right) \leq 0 . \tag{14}
\end{equation*}
$$

Gomory Cuts

Eq. (14) implies that

$$
\begin{equation*}
\sum_{j \in J^{-}} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K^{+}} a_{i j}\left(u_{j}-x_{j}\right) \leq-f_{0} \tag{15}
\end{equation*}
$$

Dividing by $-f_{0}$ gives us

$$
\begin{equation*}
-\sum_{j \in J^{-}} \frac{a_{i j}}{f_{0}}\left(x_{j}-l_{j}\right)+\sum_{j \in K^{+}} \frac{a_{i j}}{f_{0}}\left(u_{j}-x_{j}\right) \geq 1 \tag{16}
\end{equation*}
$$

(End of case 2)

Gomory Cuts

- Note that the left-hand side of both (13) and (16) is greater than zero.
- Therefore these two equations imply

$$
\begin{gather*}
\sum_{j \in J^{+}} \frac{a_{i j}}{1-f_{0}}\left(x_{j}-l_{j}\right)-\sum_{j \in J^{-}} \frac{a_{i j}}{f_{0}}\left(x_{j}-l_{j}\right) \\
+\sum_{j \in K^{+}} \frac{a_{i j}}{f_{0}}\left(u_{j}-x_{j}\right)-\sum_{j \in K^{-}} \frac{a_{i j}}{1-f_{0}}\left(u_{j}-x_{j}\right) \geq 1 . \tag{17}
\end{gather*}
$$

- Since each of the elements on the left-hand side is equal to zero under the current assignment α, then α is ruled out by the new constraint.
- In other words: the solution to the linear problem augmented with the constraint is guaranteed to be different from the previous one.

