Decision Procedures An Algorithmic Point of View

Linear Arithmetic

D. Kroening O. Strichman

ETH/Technion

Version 1.0, 2007

Part V

Linear Arithmetic

$\label{thm:continuous} Four ier-Motzkin\ Variable\ Elimination$ $\ Outline$

- History
- 2 Linear Arithmetic over the Reals
- 3 Partitioning and Bounds
- 4 Complexity

Fourier-Motzkin Variable Elimination

 Goal: decide satisfiability of conjunction of linear constraints over reals

$$\bigwedge_{1 \leq i \leq m} \sum_{1 \leq j \leq n} a_{i,j} x_j \leq b_i$$

Fourier-Motzkin Variable Elimination

 Goal: decide satisfiability of conjunction of linear constraints over reals

$$\bigwedge_{1 \le i \le m} \sum_{1 \le j \le n} a_{i,j} x_j \le b_i$$

- Earliest method for solving linear inequalities
- Discovered in 1826 by Fourier, re-discovered by Motzkin in 1936

Fourier-Motzkin Variable Elimination

 Goal: decide satisfiability of conjunction of linear constraints over reals

$$\bigwedge_{1 \le i \le m} \sum_{1 \le j \le n} a_{i,j} x_j \le b_i$$

- Earliest method for solving linear inequalities
- Discovered in 1826 by Fourier, re-discovered by Motzkin in 1936
- Basic idea of variable elimination:
 - Pick one variable and eliminate it
 - Continue until all variables but one are eliminated

Linear Arithmetic over the Reals

Input: A system of conjoined linear inequalities $A\overline{x} \leq \overline{b}$

$$\begin{array}{c} \textit{\textit{m}} \text{ constraints} & \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ a_{m1} & a_{22} & \cdots & \cdots & a_{mn} \end{array} \right) \left(\begin{array}{c} x_1 \\ \vdots \\ \vdots \\ x_n \end{array} \right) \leq \left(\begin{array}{c} b_1 \\ \vdots \\ \vdots \\ b_n \end{array} \right) \end{array}$$

n variables

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them)
- The new problem has a solution iff the old problem has one!

$$\begin{array}{rcl} 8x & \geq & 7y \\ x & \geq & 3 \\ y & \geq & z \\ z & \geq & 10 \\ 20 & > & z \end{array}$$

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them)
- The new problem has a solution iff the old problem has one!

-8x		7.,
-0.a	_	19
\overline{x}	\	3
J	_	J
y	\geq	z
z	\geq	10
20	\geq	z

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them)
- The new problem has a solution iff the old problem has one!

-8x	>	7y				
\overline{x}	\geq	3		y	\geq	z
y	\geq	z	\longrightarrow	z	\geq	10
z	\geq	10		20	\geq	z
20	>	z				

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them)
- The new problem has a solution iff the old problem has one!

-8x	>	$\overline{-7y}$				
		<u>3</u>		- 24	_	\overline{z}
\boldsymbol{x}	_	9		g	_	~
y	\geq	z	\longrightarrow	z	\geq	10
z	\geq	10		20	\geq	z
20	\geq	z				

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them)
- The new problem has a solution iff the old problem has one!

-8x	\geq	$\overline{7y}$						
\overline{x}	\geq	3		$\frac{-y}{} \geq z$		2	>	10
y	\geq	z	\longrightarrow	$z \geq 10$	\longrightarrow	20		
z	\geq	10		$20 \geq z$		20	_	2
20	>	z						

- 1. When eliminating x_n , partition the constraints according to the coefficient a_{in} :
 - $a_{i,n} > 0$: upper bound β_i
 - $a_{i,n} < 0$: lower bound β_i

- 1. When eliminating x_n , partition the constraints according to the coefficient a_{in} :
 - $a_{i,n} > 0$: upper bound β_i
 - $a_{i,n} < 0$: lower bound β_i

$$\sum_{j=1}^{n} a_{i,j} \cdot x_j \le b_i$$

- 1. When eliminating x_n , partition the constraints according to the coefficient a_{in} :
 - $a_{i,n} > 0$: upper bound β_i
 - $a_{i,n} < 0$: lower bound β_i

$$\sum_{j=1}^{n} a_{i,j} \cdot x_j \le b_i$$

$$\Rightarrow a_{i,n} \cdot x_n \leq b_i - \sum_{j=1}^{n-1} a_{i,j} \cdot x_j$$

- 1. When eliminating x_n , partition the constraints according to the coefficient a_{in} :
 - $a_{i,n} > 0$: upper bound β_i
 - $a_{i,n} < 0$: lower bound β_i

$$\sum_{j=1}^{n} a_{i,j} \cdot x_j \le b_i$$

$$\Rightarrow a_{i,n} \cdot x_n \le b_i - \sum_{j=1}^{n-1} a_{i,j} \cdot x_j$$

$$\Rightarrow x_n \le \frac{b_i}{a_{i,n}} - \sum_{j=1}^{n-1} \frac{a_{i,j}}{a_{i,n}} \cdot x_j =: \beta_i$$

Category?

(1)
$$x_1 - x_2 \leq 0$$

(2)
$$x_1 - x_3 \le 0$$

$$(3) \quad -x_1 + x_2 + 2x_3 \le 0$$

(4)
$$-x_3 \leq -1$$

Assume we eliminate x_1 .

8 / 11

Category?

(1)
$$x_1 - x_2 \leq 0$$

Upper bound

(2)
$$x_1 - x_3 \le 0$$

$$(3) \quad -x_1 + x_2 + 2x_3 \le 0$$

(4)
$$-x_3 \le -1$$

Assume we eliminate x_1 .

Category?

Upper bound

Upper bound

(1)
$$x_1 - x_2 \le 0$$

(2)
$$x_1 - x_3 \le 0$$

$$(3) \quad -x_1 + x_2 + 2x_3 \le 0$$

(4)
$$-x_3 \le -1$$

Assume we eliminate x_1 .

Category?

(1)
$$x_1 - x_2 \leq 0$$

(2)
$$x_1 - x_3 \le 0$$

Upper bound

(3)
$$-x_1 + x_2 + 2x_3 \le 0$$
 Lower bound

(4)
$$-x_3 \le -1$$

Assume we eliminate x_1 .

Adding the constraints

2. For each pair of a lower bound $a_{l,n} < 0$ and upper bound $a_{u,n} > 0$, we have

$$\beta_l \le x_n \le \beta_u$$

3. For each such pair, add the constraint

$$\beta_l \leq \beta_u$$

Category?

(1)
$$x_1 - x_2 \le 0$$

(2)
$$x_1 - x_3 \le 0$$

(3)
$$-x_1 + x_2 + 2x_3 \le 0$$

(4)
$$-x_3 \le -1$$

(1)
$$x_1 - x_2 \leq 0$$

(2)
$$x_1 - x_3 \le 0$$

(3)
$$-x_1 + x_2 + 2x_3 \le 0$$

(4)
$$-x_3 \le -1$$

Category?

Upper bound
Upper bound
Lower bound

we eliminate x_1

(1)
$$x_1 - x_2 \leq 0$$

(2)
$$x_1 - x_3 \le 0$$

(3)
$$-x_1 + x_2 + 2x_3 \le 0$$

(4)
$$-x_3 \le -1$$

 $2x_3 \le 0 \tag{from 1,3}$

Category?

Upper bound
Upper bound
Lower bound

we eliminate x_1

(5)

(1)
$$x_1 - x_2 \le 0$$

(2)
$$x_1 - x_3 < 0$$

(3)
$$-x_1 + x_2 + 2x_3 \le 0$$

(4)
$$-x_3 \le -1$$

Category?

Upper bound
Upper bound
Lower bound

we eliminate x_1

(5)
$$2x_3 \le 0$$
 (from 1,3)

(6)
$$x_2 + x_3 \le 0$$
 (from 2,3)

Category?

$$(1) x_1 x_2 \leq 0$$

$$(2)$$
 $x_1 - x_3 \leq 0$

$$(3)$$
 $-x_1 + x_2 + 2x_3 \le 0$

(4)
$$-x_3 \leq -1$$

we eliminate x_1

(5)
$$2x_3 \le 0$$

(from 1,3)

(6)
$$x_2 + x_3 \le 0$$

(from 2,3)

Category?

$$(1) x_1 x_2 \leq 0$$

$$(2)$$
 $x_1 - x_3 \leq 0$

$$(3)$$
 $-x_1 + x_2 + 2x_3 \le 0$

(4)
$$-x_3 \leq -1$$

we eliminate x_1

(5)
$$2x_3 \le 0$$
 (from 1,3)

(6)
$$x_2 + x_3 \le 0$$
 (from 2,3)

we eliminate x_3

$$(1) \quad x_1 \quad x_2 \leq 0$$

$$(2)$$
 $x_1 - x_3 \leq 0$

$$(3)$$
 $x_1 + x_2 + 2x_3 \le 0$

(4)
$$-x_3 \leq -1$$

(5) $2x_3 \le 0$

(6) $x_2 + x_3 < 0$

Category?

Lower bound we eliminate x_1 (from 1,3) Upper bound (from 2,3) Upper bound we eliminate x_3

→ Contradiction (the system is UNSAT)

Worst-case complexity:

$$m \rightarrow m^2$$

Worst-case complexity:

$$m \rightarrow m^2 \rightarrow (m^2)^2$$

Worst-case complexity:

$$m \to m^2 \to (m^2)^2 \to \ldots \to m^{2^n}$$

Worst-case complexity:

$$m \rightarrow m^2 \rightarrow (m^2)^2 \rightarrow \ldots \rightarrow m^{2^n}$$

Doctor C

• Heavy! So why is it so popular in verification?

Worst-case complexity:

$$m \rightarrow m^2 \rightarrow (m^2)^2 \rightarrow \ldots \rightarrow m^{2^n}$$

• Heavy! So why is it so popular in verification?

The bottleneck: case-splitting