Decision Procedures
 An Algorithmic Point of View

Linear Arithmetic

D. Kroening O. Strichman

ETH/Technion

Version 1.0, 2007

Part V

Linear Arithmetic

Fourier-Motzkin Variable Elimination

 Outline(1) History

(2) Linear Arithmetic over the Reals
(3) Partitioning and Bounds
(4) Complexity

Fourier-Motzkin Variable Elimination

- Goal: decide satisfiability of conjunction of linear constraints over reals

$$
\bigwedge_{1 \leq i \leq m} \sum_{1 \leq j \leq n} a_{i, j} x_{j} \leq b_{i}
$$

Fourier-Motzkin Variable Elimination

- Goal: decide satisfiability of conjunction of linear constraints over reals

$$
\bigwedge_{1 \leq i \leq m} \sum_{1 \leq j \leq n} a_{i, j} x_{j} \leq b_{i}
$$

- Earliest method for solving linear inequalities
- Discovered in 1826 by Fourier, re-discovered by Motzkin in 1936

Fourier-Motzkin Variable Elimination

- Goal: decide satisfiability of conjunction of linear constraints over reals

$$
\bigwedge_{1 \leq i \leq m} \sum_{1 \leq j \leq n} a_{i, j} x_{j} \leq b_{i}
$$

- Earliest method for solving linear inequalities
- Discovered in 1826 by Fourier, re-discovered by Motzkin in 1936
- Basic idea of variable elimination:
- Pick one variable and eliminate it
- Continue until all variables but one are eliminated

Linear Arithmetic over the Reals

Input: A system of conjoined linear inequalities $A \bar{x} \leq \bar{b}$
m constraints $\left(\begin{array}{ccccc}a_{11} & a_{12} & \cdots & \cdots & a_{1 n} \\ a_{21} & a_{22} & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ a_{m 1} & a_{22} & \cdots & \cdots & a_{m n}\end{array}\right)\left(\begin{array}{c}x_{1} \\ \vdots \\ \vdots \\ x_{n}\end{array}\right) \leq\left(\begin{array}{c}b_{1} \\ \vdots \\ \vdots \\ b_{n}\end{array}\right)$

Removing unbounded variables

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them)
- The new problem has a solution iff the old problem has one!

$$
\begin{aligned}
8 x & \geq 7 y \\
x & \geq 3 \\
y & \geq z \\
z & \geq 10 \\
20 & \geq z
\end{aligned}
$$

Removing unbounded variables

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them)
- The new problem has a solution iff the old problem has one!

Removing unbounded variables

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them)
- The new problem has a solution iff the old problem has one!

Removing unbounded variables

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them)
- The new problem has a solution iff the old problem has one!

Removing unbounded variables

- Iteratively remove variables that are not bounded in both ways (and all the constraints that use them)
- The new problem has a solution iff the old problem has one!

Partitioning the Constraints

1. When eliminating x_{n}, partition the constraints according to the coefficient $a_{i n}$:

- $a_{i, n}>0$: upper bound β_{i}
- $a_{i, n}<0$: lower bound β_{i}

Partitioning the Constraints

1. When eliminating x_{n}, partition the constraints according to the coefficient $a_{i n}$:

- $a_{i, n}>0$: upper bound β_{i}
- $a_{i, n}<0$: lower bound β_{i}

$$
\sum_{j=1}^{n} a_{i, j} \cdot x_{j} \leq b_{i}
$$

Partitioning the Constraints

1. When eliminating x_{n}, partition the constraints according to the coefficient $a_{i n}$:

- $a_{i, n}>0$: upper bound β_{i}
- $a_{i, n}<0$: lower bound β_{i}

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i, j} \cdot x_{j} \leq b_{i} \\
& \quad \Rightarrow \quad a_{i, n} \cdot x_{n} \leq b_{i}-\sum_{j=1}^{n-1} a_{i, j} \cdot x_{j}
\end{aligned}
$$

Partitioning the Constraints

1. When eliminating x_{n}, partition the constraints according to the coefficient $a_{i n}$:

- $a_{i, n}>0$: upper bound β_{i}
- $a_{i, n}<0$: lower bound β_{i}

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i, j} \cdot x_{j} \leq b_{i} \\
& \quad \Rightarrow \quad a_{i, n} \cdot x_{n} \leq b_{i}-\sum_{j=1}^{n-1} a_{i, j} \cdot x_{j} \\
& \quad \Rightarrow \quad x_{n} \leq \frac{b_{i}}{a_{i, n}}-\sum_{j=1}^{n-1} \frac{a_{i, j}}{a_{i, n}} \cdot x_{j} \quad=: \beta_{i}
\end{aligned}
$$

Example for Upper and Lower Bounds

Category?

(1) $x_{1}-x_{2} \leq 0$
(2) $x_{1}-x_{3} \leq 0$
(3) $-x_{1}+x_{2}+2 x_{3} \leq 0$
(4) $\quad-x_{3} \leq-1$

Assume we eliminate x_{1}.

Example for Upper and Lower Bounds

Category?

(1) $x_{1}-x_{2} \leq 0$
(2) $x_{1}-x_{3} \leq 0$
(3) $-x_{1}+x_{2}+2 x_{3} \leq 0$
(4) $-x_{3} \leq-1$

Upper bound

Assume we eliminate x_{1}.

Example for Upper and Lower Bounds

Category?

(1) $x_{1}-x_{2} \leq 0$
(2) $x_{1}-x_{3} \leq 0$
(3) $-x_{1}+x_{2}+2 x_{3} \leq 0$
(4) $-x_{3} \leq-1$

Assume we eliminate x_{1}.

Example for Upper and Lower Bounds

Category?
(1) $x_{1}-x_{2} \leq 0$

Upper bound
(2) $x_{1}-x_{3} \leq 0$

Upper bound
(3) $-x_{1}+x_{2}+2 x_{3} \leq 0 \quad$ Lower bound
(4) $\quad-x_{3} \leq-1$

Assume we eliminate x_{1}.

Adding the constraints

2. For each pair of a lower bound $a_{l, n}<0$ and upper bound $a_{u, n}>0$, we have

$$
\beta_{l} \leq x_{n} \leq \beta_{u}
$$

3. For each such pair, add the constraint

$$
\beta_{l} \leq \beta_{u}
$$

Fourier-Motzkin: Example

Category?

(1) $x_{1}-x_{2} \leq 0$
(2) $x_{1}-x_{3} \leq 0$
(3) $-x_{1}+x_{2}+2 x_{3} \leq 0$
(4) $-x_{3} \leq-1$

Fourier-Motzkin: Example

Category?

(1) $x_{1}-x_{2} \leq 0$
(2) $x_{1}-x_{3} \leq 0$
(3) $-x_{1}+x_{2}+2 x_{3} \leq 0$
(4) $\quad-x_{3} \leq-1$

Upper bound
 Upper bound
 Lower bound

we eliminate x_{1}

Fourier-Motzkin: Example

Category?

(1) $x_{1}-x_{2} \leq 0$
(2) $x_{1}-x_{3} \leq 0$
(3) $-x_{1}+x_{2}+2 x_{3} \leq 0$
(4) $\quad-x_{3} \leq-1$

Upper bound
Upper bound
Lower bound
we eliminate x_{1}
(5) $2 x_{3} \leq 0 \quad$ (from 1,3$)$

Fourier-Motzkin: Example

Category?

(1) $x_{1}-x_{2} \leq 0$
(2) $x_{1}-x_{3} \leq 0$
(3) $-x_{1}+x_{2}+2 x_{3} \leq 0$
(4) $-x_{3} \leq-1$
$\begin{array}{ll}2 x_{3} \leq 0 & \text { (from } 1,3)\end{array}$
$\begin{array}{ll}\text { (5) } \quad 2 x_{3} \leq 0 & \text { (from 1,3) } \\ \text { (6) } \quad x_{2}+x_{3} \leq 0 & \text { (from 2,3) }\end{array}$
Upper bound
Upper bound
Lower bound
we eliminate x_{1}

Fourier-Motzkin: Example

Category?

we eliminate x_{1}
(5) $2 x_{3} \leq 0$
(from 1,3)
(6) $x_{2}+x_{3} \leq 0$
(from 2,3)

Fourier-Motzkin: Example

Category?

we eliminate x_{1}
(5) $2 x_{3} \leq 0$
(from 1,3)
(6) $x_{2}+x_{3} \leq 0$
(from 2,3)
we eliminate x_{3}

Fourier-Motzkin: Example

Category?

Fourier-Motzkin: Example

Category?

Complexity

- Worst-case complexity:

$$
m \rightarrow m^{2}
$$

Complexity

- Worst-case complexity:

$$
m \rightarrow m^{2} \rightarrow\left(m^{2}\right)^{2}
$$

Complexity

- Worst-case complexity:

$$
m \rightarrow m^{2} \rightarrow\left(m^{2}\right)^{2} \rightarrow \ldots \rightarrow m^{2^{n}}
$$

Complexity

- Worst-case complexity:

$$
m \rightarrow m^{2} \rightarrow\left(m^{2}\right)^{2} \rightarrow \ldots \rightarrow m^{2^{n}}
$$

- Heavy! So why is it so popular in verification?

Complexity

- Worst-case complexity:

$$
m \rightarrow m^{2} \rightarrow\left(m^{2}\right)^{2} \rightarrow \ldots \rightarrow m^{2^{n}}
$$

- Heavy! So why is it so popular in verification?

- The bottleneck: case-splitting

