Bit-Vectors
Chapter 6

Decision Procedures
An Algorithmic Point of View

Revision 1.2

D.Kroening  O.Strichman

Outline

@ Introduction to Bit-Vector Logic
@ Syntax
© Semantics

@ Decision procedures for Bit-Vector Logic
o Flattening Bit-Vector Logic
@ Incremental Flattening

Decision Procedures — Bit-Vectors

Decision Procedures for System-Level Software

What kind of logic do we need for system-level software?

State { int created = 0; }

IoCreateDevice.exit {
if ($return==STATUS_SUCCESS)
created = 1;

}

IoDeleteDevice.exit { created = 0; }
Bit-wise AND
fun_AddDevice.exit {
if (created && (pdevobj->Flags & DO_DEVICE_INITIALIZING) != 0) {
abort "AddDevice routine failed to set "
"“DO_DEVICE_INITIALIZING flag";

An Invariant of Microsoft Windows Device Drivers

Decision Procedures — Bit-Vectors

Decision Procedures for System-Level Software

What kind of logic do we need for system-level software?

@ We need bit-vector logic — with bit-wise operators, arithmetic
overflow

o We want to scale to large programs — must verify large
formulas
o Examples of program analysis tools that generate bit-vector
formulas:
e CBMC
e SATABS
o F-Soft (NEC)
o SATURN (Stanford, Alex Aiken)
e EXE (Stanford, Dawson Engler, David Dill)
e Variants of those developed at IBM, Microsoft

Decision Procedures — Bit-Vectors

Bit-Vector Logic: Syntax

formula formula V formula | ~formula | atom
atom : term rel term | Boolean-Identifier | term[ constant ]
rel @ = | <
term : term op term | identifier | ~ term | constant |
atom?term:term |
term| constant : constant] | ext(term )
Al =/l << | > &l 1@ o

@ ~ x: bit-wise negation of x

ext(x): sign- or zero-extension of x
o 1 << d: left shift with distance d
@ x oy: concatenation of x and y

Decision Procedures — Bit-Vectors

Semantics

Danger!

(z—y>0) <= (z>y)

Valid over R/N, but not over the bit-vectors.
(Many compilers have this sort of bug)

Decision Procedures — Bit-Vectors




Width and Encoding

@ The meaning depends on the width and encoding of the
variables.

@ Typical encodings:

e Binary encoding

e Two's complement
1-2
(x)g:=—2""" a1+ Z(u -2
1=0

e But maybe also fixed-point, floating-point, ...

Decision Procedures — Bit-Vectors 7

Examples

(11001000)y = 200
(11001000)g = —128 + 64+ 8 = —56
(01100100)g = 100

Decision Procedures — Bit-Vectors 8
Width and Encoding Bit-vectors Made Formal
Definition (Bit-Vector)
A bit-vector is a vector of Boolean values with a given length [:
Notation to clarify width and encoding: bi{0,. ...l -1} — {0,1}
L[32]S
Width in bits U: unsigned binary The value of bit number i of x is x(7).
S: signed two's complement
’ bl*l ‘ ])1,2 ‘ - ‘ })2 ‘ [)1 ‘ bn ‘
[ bits
We also write 2; for x(7).
Decision Procedures — Bit-Vectors 9 Decision Procedures — Bit-Vectors 10

Lambda-Notation for Bit-Vectors

A expressions are functions without a name

Examples:

@ The vector of length [ that consists of zeros:

Nief0,...,1—1}.0

e A function that inverts (flips all bits in) a bit-vector:

bu-invert(z) := M € {0,..., l—1}a

o A bit-wise OR:
bv-or(x,y) == Xi € {0,...,1 — 1}.(x; V ;)

= we now have semantics for the bit-wise operators.

Decision Procedures — Bit-Vectors 11

Example

(w10) 0 yj5))[14] = z[9]
@ This is translated as follows:

z[9] = a9

(zoy) = Xi.(i <5)?;: x5

(zoy)[14] = (N.( <5)?yi: xi—5)(14)

e Final result:

(Ni.(i < B)7y; t wi—5)(14) <= w9

Decision Procedures — Bit-Vectors




Semantics for Arithmetic Expressions

What is the output of the following program?

?‘”’b
unsigned char number = 200; ((:\ v@
number = number + 100; i{,{

printf("Sum: %d\n", number);

On most architectures, this is 44!

11001000 = 200
+ 01100100 = 100
= 00101100 =44

— Bit-vector arithmetic uses modular arithmetic!

Decision Procedures — Bit-Vectors

13

Semantics for Arithmetic Expressions

Semantics for addition, subtraction:

agtu by =cy = (au+(d)v = (c)u mod 2!
ag—vby=cy <<= (@ — (b)v = (c)v mod 2
ap +sby=cpy <<= (a)s+(b)s =(c)s mod 2!
ap —sby=cy == (a)s—(b)s = {c)s mod 2!

We can even mix the encodings:

a[l]U +u b[l]S = C[Z]U = <a>U -+ <b>5 = <C>U mod 21

Decision Procedures — Bit-Vectors

Semantics for Relational Operators

Semantics for <, <, >, and so on:

agu < by

<~
ays < b[l]g <~
Mixed encodings:

apu <bpys = (a)u <(b)s
ags <bgy = {a)s <{b)v

Note that most compilers don't support comparisons with mixed
encodings.

Decision Procedures — Bit-Vectors

15

Complexity

o Satisfiability is undecidable for an unbounded width, even
without arithmetic.

e It is NP-complete otherwise.

Decision Procedures — Bit-Vectors

A Simple Decision Procedure

e Transform Bit-Vector Logic to Propositional Logic
@ Most commonly used decision procedure
o Also called 'bit-blasting’

Bit-Vector Flattening
@ Convert propositional part as before
@ Add a Boolean variable for each bit of each sub-expression
(term)
© Add constraint for each sub-expression

Decision Procedures — Bit-Vectors

We denote the new Boolean variable for bit i of term ¢ by p(t);.

Bit-vector Flattening

What constraints do we generate for a given term?

@ This is easy for the bit-wise operators.

e Example for a|b:

-1
A w®)i = (ai v b))

1=0

(read = = y over bits as © <= y)

o We can transform this into CNF using Tseitin's method.

17

Decision Procedures — Bit-Vectors




Flattening Bit-Vector Arithmetic

How to flatten a + b?

—— we can build a circuit that adds them!

abi

[ Full Adder

FA s = (a+b+i)mod2 = ahbDi

] o = (a+b+i)div2 = a-b+a-i+b-i
0 s

The full adder in CNF:

(aVbV=0)A(aV=bViV=0)A(aV-bV=iVo)A
(maVbViV=0)A(=aVbV—iVo)A(=aV-bVo)

Decision Procedures — Bit-Vectors

19

Flattening Bit-Vector Arithmetic

Ok, this is good for one bit! How about more?

8-Bit ripple carry adder (RCA)

(l5l)5 (I[,I)Jt a4b3 a;gbg (lQb] (l[]b(]

a7b7 (leG

o Also called carry chain adder
o Adds [ variables
@ Adds 6 - [ clauses

Decision Procedures — Bit-Vectors

20

Multipliers

o Multipliers result in very hard formulas

o Example:

a-b=cANb-atchez<yAhz>y

CNF: About 11000 variables, unsolvable for current SAT
solvers

o Similar problems with division, modulo

e Q: Why is this hard?
e Q: How do we fix this?

Decision Procedures — Bit-Vectors

21

Incremental Flattening

'
Pf = Pskr 1 :w

Pick F' C (I\ F)

F:=FUF

@y := @5 A CONSTRAINT(F’)

120
| tecosamiel——  compusil

No! {I =0

UNSAT SAT

wsi: Boolean part of
F: set of terms that are in the encoding
I: set of terms that are inconsistent with the current assignment

Decision Procedures — Bit-Vectors

22

Incremental Flattening

o |dea: add 'easy’ parts of the formula first

@ Only add hard parts when needed

@ ¢ only gets stronger — use an incremental SAT solver

Decision Procedures — Bit-Vectors

23

Incomplete Assignments

@ Hey: initially, we only have the skeleton!
How do we know what terms are inconsistent with the current
assignment if the variables aren't even in ,?

@ Solution: guess some values for the missing variables.
If you guess right, it's good.

o Ideas:
o All zeros
e Sign extension for signed bit-vectors
o Try to propagate constants (a = b+ 1)

Decision Procedures — Bit-Vectors

24




