
Decision Procedures
An Algorithmic Point of View

D.Kroening O.Strichman

Arrays

Chapter 7

Revision 1.0



Outline

1 Introduction
Definition
Basic Operations
Syntax
Semantics
Example

2 Arrays as Uninterpreted Functions

3 A Reduction Algorithm for Array Logic
Array Properties
A Reduction Algorithm

Decision Procedures – Arrays 2



Motivation

Arrays are an important data structure:

“Native” implementation in most processor architectures

Offered by most programming languages

O(1) index operation
E.g., all data structures in Minisat are based on arrays

Hardware: memories

Decision Procedures – Arrays 3



Formalization

Mapping from an index type to an element type

TI : index type

TE : element type

TA = (TI −→ TE): array type

Assumption: there are relations

=I⊆ (TI × TI) and =E⊆ (TE × TE)

The subscript is omitted if the type of the operands is clear.

The theories used to reason about the indices and the
elements are called index theory and element theory,
respectively.

Decision Procedures – Arrays 4



Basic Operations

Let a ∈ TA denote an array.

There are two basic operations on arrays:

1 Reading: a[i] is the value of the element that has index i

2 Writing: the array a where element i has been replaced by e is
denoted by a{i←− e}

Decision Procedures – Arrays 5



More About the Index Theory

What theory is suitable for the indices?

Index logic should permit existential and universal
quantification:

“there exists an array element that is zero”
“all elements of the array are greater than zero”

Example: Presburger arithmetic, i.e., linear arithmetic over
integers with quantification

n-dimensional arrays:
For n ≥ 2, add TA(n− 1) to the element type of TA(n).

Decision Procedures – Arrays 6



More About the Index Theory

What theory is suitable for the indices?

Index logic should permit existential and universal
quantification:

“there exists an array element that is zero”
“all elements of the array are greater than zero”

Example: Presburger arithmetic, i.e., linear arithmetic over
integers with quantification

n-dimensional arrays:
For n ≥ 2, add TA(n− 1) to the element type of TA(n).

Decision Procedures – Arrays 6



A Very General Definition of Array Logic

Syntax defined by extending the syntactic rules for the index logic
and the element logic

atomI : atom in the index logic

atomE : atom in the element logic

termI : term in the index logic

termE : term in the element logic

Decision Procedures – Arrays 7



Syntax

atom : atomI | atomE | ¬atom | atom ∧ atom |
∀ array-identifier . atom

termA : array-identifier | termA{termI ←− termE}
termE : termA [ termI ]

Equality between arrays a1 and a2: write as ∀i. a1[i] = a2[i]

Decision Procedures – Arrays 8



Semantics

Main axiom:

Axiom (Read-over-write Axiom)

∀a ∈ TA. ∀e ∈ TE . ∀i, j ∈ TI .

a{i←− e}[j] =
{

e : i = j
a[j] : otherwise .

Decision Procedures – Arrays 9



Program Verification Example I

1 a: array 0..99 of integer;
2 i: integer;
3
4 for i:=0 to 99 do
5 /* ∀x ∈ N0. x < i −→ a[x] = 0 */
6 a[i]:=0;
7 /* ∀x ∈ N0. x ≤ i −→ a[x] = 0 */
8 done;
9 /* ∀x ∈ N0. x ≤ 99 −→ a[x] = 0 */

Decision Procedures – Arrays 10



Program Verification Example II

Main step of the correctness argument:
invariant in line 7 is maintained by the assignment in line 6

Verification condition:

(∀x ∈ N0. x < i −→ a[x] = 0)
∧ a′ = a{i←− 0}
−→ (∀x ∈ N0. x ≤ i −→ a′[x] = 0)

Decision Procedures – Arrays 11



Decidability

Q: Is this logic decidable?

A: No, even if the combination of the index logic and the element
logic is decidable

Decision Procedures – Arrays 12



Decidability

Q: Is this logic decidable?

A: No, even if the combination of the index logic and the element
logic is decidable

Decision Procedures – Arrays 12



Arrays as Uninterpreted Functions

Fragment: no quantification over arrays

Arrays are functions! (From indices to elements)

Idea: use procedures for uninterpreted functions!

Decision Procedures – Arrays 13



Arrays as Uninterpreted Functions

Fragment: no quantification over arrays

Arrays are functions! (From indices to elements)

Idea: use procedures for uninterpreted functions!

Decision Procedures – Arrays 13



Arrays as Uninterpreted Functions

Fragment: no quantification over arrays

Arrays are functions! (From indices to elements)

Idea: use procedures for uninterpreted functions!

Decision Procedures – Arrays 13



Example

(i = j ∧ a[j] = ’z’) −→ a[i] = ’z’

’z’: read as an integer number

Fa: uninterpreted function introduced for the array a:

(i = j ∧ Fa(j) = ’z’) −→ Fa(i) = ’z’

Decision Procedures – Arrays 14



Example

(i = j ∧ a[j] = ’z’) −→ a[i] = ’z’

’z’: read as an integer number

Fa: uninterpreted function introduced for the array a:

(i = j ∧ Fa(j) = ’z’) −→ Fa(i) = ’z’

Decision Procedures – Arrays 14



Example

(i = j ∧ Fa(j) = ’z’) −→ Fa(i) = ’z’

Apply Bryant’s reduction:

(i = j ∧ F ∗
1 = ’z’) −→ F ∗

2 = ’z’

where

F ∗
1 = f1 and F ∗

2 =
{

f1 : i = j
f2 : otherwise

Prove this using a decision procedure for equality logic.

Decision Procedures – Arrays 15



Array Updates

What about a{i←− e}?

1 Replace a{i←− e} by a fresh variable a′ of array type

2 Add two constraints:

a) a′[i] = e for the value that is written,
b) ∀j 6= i. a′[j] = a[j] for the values that are unchanged.

Compare to the read-over-write axiom!

This is called the write rule.

Decision Procedures – Arrays 16



Array Updates

What about a{i←− e}?

1 Replace a{i←− e} by a fresh variable a′ of array type

2 Add two constraints:

a) a′[i] = e for the value that is written,
b) ∀j 6= i. a′[j] = a[j] for the values that are unchanged.

Compare to the read-over-write axiom!

This is called the write rule.

Decision Procedures – Arrays 16



Array Updates: Example I

Transform
a{i←− e}[i] ≥ e

into:
a′[i] = e −→ a′[i] ≥ e

Decision Procedures – Arrays 17



Array Updates: Example II

Transform
a[0] = 10 −→ a{1←− 20}[0] = 10

into:

(a[0] = 10 ∧ a′[1] = 20 ∧ (∀j 6= 1. a′[j] = a[j])) −→ a′[0] = 10

and then replace a, a′:

(Fa(0) = 10∧Fa′(1) = 20∧(∀j 6= 1. Fa′(j) = Fa(j))) −→ Fa′(0) = 10

Q: Is this decidable in general?
Say Presburger plus uninterpreted functions?

Decision Procedures – Arrays 18



Array Updates: Example II

Transform
a[0] = 10 −→ a{1←− 20}[0] = 10

into:

(a[0] = 10 ∧ a′[1] = 20 ∧ (∀j 6= 1. a′[j] = a[j])) −→ a′[0] = 10

and then replace a, a′:

(Fa(0) = 10∧Fa′(1) = 20∧(∀j 6= 1. Fa′(j) = Fa(j))) −→ Fa′(0) = 10

Q: Is this decidable in general?
Say Presburger plus uninterpreted functions?

Decision Procedures – Arrays 18



Array Updates: Example II

Transform
a[0] = 10 −→ a{1←− 20}[0] = 10

into:

(a[0] = 10 ∧ a′[1] = 20 ∧ (∀j 6= 1. a′[j] = a[j])) −→ a′[0] = 10

and then replace a, a′:

(Fa(0) = 10∧Fa′(1) = 20∧(∀j 6= 1. Fa′(j) = Fa(j))) −→ Fa′(0) = 10

Q: Is this decidable in general?
Say Presburger plus uninterpreted functions?

Decision Procedures – Arrays 18



Array Properties

Now: restricted class of array logic formulas in order to obtain
decidability.
We consider formulas that are Boolean combinations of array
properties.

Definition (array property)

A formula is an array property iff if it is of the form

∀i1, . . . , ik ∈ TI . φI(i1, . . . , ik) −→ φV (i1, . . . , ik) ,

and satisfies the following conditions:

1 The predicate φI must be an index guard.

2 The index variables i1, . . . , ik can only be used in array read
expressions of the form a[ij ].

The predicate φV is called the value constraint.

Decision Procedures – Arrays 19



Index Guards

Definition (Index Guard)

A formula is an index guard iff if follows the grammar

iguard : iguard ∧ iguard | iguard ∨ iguard |
iterm ≤ iterm | iterm = iterm

iterm : i1 | . . . | ik | term
term : integer-constant |

integer-constant · index-identifier |
term + term

The “index-identifier” used in “term” must not be one of
i1, . . . , ik.

Decision Procedures – Arrays 20



Array Properties: Example

The extensionality rule defines the equality of two arrays a1 and a2

as element-wise equality. Extensionality is an array property:

∀i. a1[i] = a2[i]

How about the array update?

a′ = a{i←− 0}

Is this an array property as well?

Decision Procedures – Arrays 21



Array Properties: Example

The extensionality rule defines the equality of two arrays a1 and a2

as element-wise equality. Extensionality is an array property:

∀i. a1[i] = a2[i]

How about the array update?

a′ = a{i←− 0}

Is this an array property as well?

Decision Procedures – Arrays 21



Array Properties: Array Update

An array update expression can be replaced by adding two
constraints:

a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]

The first conjunct is obviously an array property.

The second conjunct can be rewritten as

∀j. (j ≤ i− 1 ∨ i + 1 ≤ j) −→ a′[j] = a[j]

Decision Procedures – Arrays 22



Array Properties: Array Update

An array update expression can be replaced by adding two
constraints:

a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]

The first conjunct is obviously an array property.

The second conjunct can be rewritten as

∀j. (j ≤ i− 1 ∨ i + 1 ≤ j) −→ a′[j] = a[j]

Decision Procedures – Arrays 22



Algorithm

Input: Array property formula φA in NNF
Output: Formula φUF

1 Apply the write rule to remove all array updates from φA.

2 Replace all existential quantifications of the form
∃i ∈ TI . P (i) by P (j), where j is a fresh variable.

3 Replace all universal quantifications of the form ∀i ∈ TI . P (i)
by ∧

i∈I(φ)

P (i) .

4 Replace the array read operators by uninterpreted functions
and obtain φUF ;

5 return φUF ;

Decision Procedures – Arrays 23



The Set I

I(φ) denotes the index expressions that i might possibly be equal
to.

Theorem: This set contains the following elements:

1 All expressions used as an array index in φ that are not
quantified variables.

2 All expressions used inside index guards in φ that are not
quantified variables.

3 If φ contains none of the above, I(φ) is {0} in order to obtain
a nonempty set of index expressions.

Decision Procedures – Arrays 24



Example

We prove validity of

(∀x ∈ N0. x < i −→ a[x] = 0)
∧ a′ = a{i←− 0}
−→ (∀x ∈ N0. x ≤ i −→ a′[x] = 0) .

That is, we check satisfiability of

(∀x ∈ N0. x < i −→ a[x] = 0)
∧ a′ = a{i←− 0}
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] 6= 0) .

Decision Procedures – Arrays 25



Example

Apply write rule:

(∀x ∈ N0. x < i −→ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] 6= 0) .

Instantiate existential quantifier with a new variable z ∈ N0:

(∀x ∈ N0. x < i −→ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]
∧ z ≤ i ∧ a′[z] 6= 0) .

Decision Procedures – Arrays 26



Example

The set I for our example is {i, z}.
Replace the two universal quantifications as follows:

(i < i −→ a[i] = 0) ∧ (z < i −→ a[z] = 0)
∧ a′[i] = 0 ∧ (i 6= i −→ a′[i] = a[i]) ∧ (z 6= i −→ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] 6= 0) .

Remove the trivially satisfied conjuncts to obtain

(z < i −→ a[z] = 0)
∧ a′[i] = 0 ∧ (z 6= i −→ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] 6= 0) .

Decision Procedures – Arrays 27



Example

Replace the arrays by uninterpreted functions:

(z < i −→ Fa(z) = 0)
∧ Fa′(i) = 0 ∧ (z 6= i −→ Fa′(z) = Fa(z))
∧ z ≤ i ∧ Fa′(z) 6= 0) .

By distinguishing the three cases z < i, z = i, and z > i, it is easy
to see that this formula is unsatisfiable.

Decision Procedures – Arrays 28


	Introduction
	Definition
	Basic Operations
	Syntax
	Semantics
	Example

	Arrays as Uninterpreted Functions
	A Reduction Algorithm for Array Logic
	Array Properties
	A Reduction Algorithm


