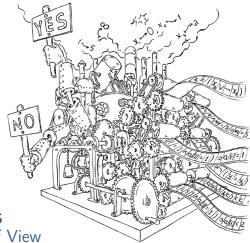
Arrays

Chapter 7



Decision Procedures An Algorithmic Point of View

D.Kroening O.Strichman

Revision 1.0

1 Introduction

- Definition
- Basic Operations
- Syntax
- Semantics
- Example
- **2** Arrays as Uninterpreted Functions
- **3** A Reduction Algorithm for Array Logic
 - Array Properties
 - A Reduction Algorithm

Arrays are an important data structure:

- "Native" implementation in most processor architectures
- Offered by most programming languages
- *O*(1) index operation E.g., all data structures in Minisat are based on arrays
- Hardware: memories

- Mapping from an *index type* to an *element type*
- T_I : index type
- T_E : element type
- $T_A = (T_I \longrightarrow T_E)$: array type
- Assumption: there are relations

 $=_I \subseteq (T_I \times T_I)$ and $=_E \subseteq (T_E \times T_E)$

The subscript is omitted if the type of the operands is clear.

• The theories used to reason about the indices and the elements are called *index theory* and *element theory*, respectively.

Let $a \in T_A$ denote an array.

There are two basic operations on arrays:

() Reading: a[i] is the value of the element that has index i

Writing: the array a where element i has been replaced by e is denoted by a{i ← e}

What theory is suitable for the indices?

- Index logic should permit existential and universal quantification:
 - "there exists an array element that is zero"
 - "all elements of the array are greater than zero"
- Example: *Presburger arithmetic*, i.e., linear arithmetic over integers with quantification

What theory is suitable for the indices?

- Index logic should permit existential and universal quantification:
 - "there exists an array element that is zero"
 - "all elements of the array are greater than zero"
- Example: *Presburger arithmetic*, i.e., linear arithmetic over integers with quantification

n-dimensional arrays: For $n \ge 2$, add $T_A(n-1)$ to the element type of $T_A(n)$. Syntax defined by extending the syntactic rules for the index logic and the element logic

- *atom*_I: atom in the index logic
- *atom_E*: atom in the element logic
- *term*_I: term in the index logic
- *term_E*: term in the element logic

- atom : $atom_I \mid atom_E \mid \neg atom \mid atom \land atom \mid$ $\forall array-identifier. atom$
- $term_A$: array-identifier | $term_A \{term_I \leftarrow term_E\}$
- $term_E$: $term_A [term_I]$

Equality between arrays a_1 and a_2 : write as $\forall i. a_1[i] = a_2[i]$

Main axiom:

Axiom (Read-over-write Axiom) $\forall a \in T_A. \ \forall e \in T_E. \ \forall i, j \in T_I.$ $a\{i \leftarrow e\}[j] = \begin{cases} e : i = j \\ a[j] : otherwise. \end{cases}$

```
1
     a: array 0..99 of integer;
2
    i: integer;
3
4
     for i:=0 to 99 do
5
               /* \forall x \in \mathbb{N}_0. \ x < i \longrightarrow a[x] = 0 */
6
               a[i]:=0:
7
                /* \forall x \in \mathbb{N}_0. x < i \longrightarrow a[x] = 0 */
8
     done:
9
     /* \forall x \in \mathbb{N}_0. \ x \leq 99 \longrightarrow a[x] = 0 */
```

Main step of the correctness argument: invariant in line 7 is maintained by the assignment in line 6

Verification condition:

$$\begin{array}{l} (\forall x \in \mathbb{N}_0. \ x < i \longrightarrow \mathbf{a}[x] = 0) \\ \wedge \quad \mathbf{a}' = \mathbf{a}\{i \longleftarrow 0\} \\ \longrightarrow \quad (\forall x \in \mathbb{N}_0. \ x \le i \longrightarrow \mathbf{a}'[x] = 0) \end{array}$$

Q: Is this logic decidable?

Q: Is this logic decidable?

A: No, even if the combination of the index logic and the element logic is decidable

Fragment: no quantification over arrays

Fragment: no quantification over arrays

Arrays are functions! (From indices to elements)

Fragment: no quantification over arrays

Arrays are functions! (From indices to elements)

Idea: use procedures for uninterpreted functions!

Example

$$(i = j \land a[j] = `z`) \longrightarrow a[i] = `z`$$

'z': read as an integer number

$$(i = j \land a[j] = \texttt{'z'}) \longrightarrow a[i] = \texttt{'z'}$$

'z': read as an integer number

 F_a : uninterpreted function introduced for the array a:

$$(i = j \land F_a(j) = 'z') \longrightarrow F_a(i) = 'z'$$

$$(i = j \land F_a(j) = 'z') \longrightarrow F_a(i) = 'z'$$

Apply Bryant's reduction:

$$(i = j \land F_1^* = `z`) \longrightarrow F_2^* = `z`$$

where

$$F_1^* = f_1$$
 and $F_2^* = \begin{cases} f_1 &: i = j \\ f_2 &: otherwise \end{cases}$

Prove this using a decision procedure for equality logic.

What about $a\{i \leftarrow e\}$?

What about $a\{i \leftarrow e\}$?

1 Replace $a\{i \leftarrow e\}$ by a fresh variable a' of array type

2 Add two constraints:

a) a'[i] = e for the value that is written,

b) $\forall j \neq i. a'[j] = a[j]$ for the values that are unchanged.

Compare to the read-over-write axiom!

This is called the *write rule*.

Transform

 $a\{i \longleftarrow e\}[i] \geq e$

into:

$$a'[i] = e \longrightarrow a'[i] \ge e$$

Array Updates: Example II

Transform

$$a[0] = 10 \longrightarrow a\{1 \longleftarrow 20\}[0] = 10$$

into:

$$(a[0] = 10 \land a'[1] = 20 \land (\forall j \neq 1. \ a'[j] = a[j])) \longrightarrow a'[0] = 10$$

Array Updates: Example II

Transform

$$a[0] = 10 \longrightarrow a\{1 \longleftarrow 20\}[0] = 10$$

into:

$$(a[0] = 10 \land a'[1] = 20 \land (\forall j \neq 1. \ a'[j] = a[j])) \longrightarrow a'[0] = 10$$

and then replace a, a':

 $(F_a(0) = 10 \land F_{a'}(1) = 20 \land (\forall j \neq 1. F_{a'}(j) = F_a(j))) \longrightarrow F_{a'}(0) = 10$

Transform

$$a[0] = 10 \longrightarrow a\{1 \longleftarrow 20\}[0] = 10$$

into:

$$(a[0] = 10 \land a'[1] = 20 \land (\forall j \neq 1. \ a'[j] = a[j])) \longrightarrow a'[0] = 10$$

and then replace a, a':

 $(F_a(0) = 10 \land F_{a'}(1) = 20 \land (\forall j \neq 1. F_{a'}(j) = F_a(j))) \longrightarrow F_{a'}(0) = 10$

Q: Is this decidable in general? Say Presburger plus uninterpreted functions?

Decision Procedures – Arrays

Now: restricted class of array logic formulas in order to obtain decidability. We consider formulas that are Boolean combinations of **array properties**.

Definition (array property)

A formula is an array property iff if it is of the form

 $\forall i_1,\ldots,i_k\in T_I.\ \phi_I(i_1,\ldots,i_k)\longrightarrow \phi_V(i_1,\ldots,i_k)\ ,$

and satisfies the following conditions:

- The predicate ϕ_I must be an *index guard*.
- The index variables i₁,..., i_k can only be used in array read expressions of the form a[i_j].

The predicate ϕ_V is called the *value constraint*.

Definition (Index Guard)

A formula is an *index guard* iff if follows the grammar

iguard	:	$iguard \land iguard \mid iguard \lor iguard \mid$
		$iterm \leq iterm iterm = iterm$
iterm	:	$i_1 \mid \ldots \mid i_k \mid term$
term	:	integer-constant
		$integer$ -constant \cdot index-identifier
		term + term

The "index-identifier" used in "term" must not be one of i_1, \ldots, i_k .

The extensionality rule defines the equality of two arrays a_1 and a_2 as element-wise equality. Extensionality is an array property:

 $\forall i. \ a_1[i] = a_2[i]$

The extensionality rule defines the equality of two arrays a_1 and a_2 as element-wise equality. Extensionality is an array property:

 $\forall i. \ a_1[i] = a_2[i]$

How about the array update?

$$\mathbf{a}' = \mathbf{a}\{i \longleftarrow 0\}$$

Is this an array property as well?

An array update expression can be replaced by adding two constraints:

$$a'[i] = 0 \quad \land \quad \forall j \neq i. \ a'[j] = a[j]$$

The first conjunct is obviously an array property.

An array update expression can be replaced by adding two constraints:

$$a'[i] = 0 \quad \land \quad \forall j \neq i. \ a'[j] = a[j]$$

The first conjunct is obviously an array property.

The second conjunct can be rewritten as

$$\forall j. \ (j \le i - 1 \lor i + 1 \le j) \longrightarrow a'[j] = a[j]$$

Algorithm

Input: Array property formula ϕ_A in NNF Output: Formula ϕ_{UF}

- **(**) Apply the write rule to remove all array updates from ϕ_A .
- **2** Replace all existential quantifications of the form $\exists i \in T_I. P(i)$ by P(j), where j is a fresh variable.
- **③** Replace all universal quantifications of the form $\forall i \in T_I. \ P(i)$ by

 $\bigwedge_{i\in\mathcal{I}(\phi)}P(i)\;.$

 Replace the array read operators by uninterpreted functions and obtain \(\phi_{UF}\);

5 return ϕ_{UF} ;

 $\mathcal{I}(\phi)$ denotes the index expressions that i might possibly be equal to.

Theorem: This set contains the following elements:

- All expressions used as an array index in \u03c6 that are not quantified variables.
- All expressions used inside index guards in \u03c6 that are not quantified variables.
- If \(\phi\) contains none of the above, \(\mathcal{I}(\phi)\) is \{0\} in order to obtain a nonempty set of index expressions.

Example

We prove validity of

$$\begin{array}{l} (\forall x \in \mathbb{N}_0. \; x < i \longrightarrow \mathbf{a}[x] = 0) \\ \wedge \quad \mathbf{a}' = \mathbf{a}\{i \longleftarrow 0\} \\ \longrightarrow \quad (\forall x \in \mathbb{N}_0. \; x \le i \longrightarrow \mathbf{a}'[x] = 0) \; . \end{array}$$

That is, we check satisfiability of

$$\begin{array}{l} (\forall x \in \mathbb{N}_0. \; x < i \longrightarrow \mathbf{a}[x] = 0) \\ \wedge \quad \mathbf{a}' = \mathbf{a}\{i \longleftarrow 0\} \\ \wedge \quad (\exists x \in \mathbb{N}_0. \; x \le i \wedge \mathbf{a}'[x] \neq 0) \; . \end{array}$$

Apply write rule:

$$\begin{array}{l} (\forall x \in \mathbb{N}_0. \ x < i \longrightarrow \mathbf{a}[x] = 0) \\ \wedge \quad \mathbf{a}'[i] = 0 \land \forall j \neq i. \ \mathbf{a}'[j] = \mathbf{a}[j] \\ \wedge \quad (\exists x \in \mathbb{N}_0. \ x \le i \land \mathbf{a}'[x] \neq 0) \ . \end{array}$$

Instantiate existential quantifier with a new variable $z \in \mathbb{N}_0$:

$$\begin{array}{l} (\forall x \in \mathbb{N}_0. \ x < i \longrightarrow \mathbf{a}[x] = 0) \\ \wedge \quad \mathbf{a}'[i] = 0 \land \forall j \neq i. \ \mathbf{a}'[j] = \mathbf{a}[j] \\ \wedge \quad z \le i \land \mathbf{a}'[z] \neq 0) \ . \end{array}$$

Decision Procedures – Arrays

Example

The set \mathcal{I} for our example is $\{i, z\}$. Replace the two universal quantifications as follows:

$$\begin{array}{l} (i < i \longrightarrow \mathbf{a}[i] = 0) \land (z < i \longrightarrow \mathbf{a}[z] = 0) \\ \land \quad \mathbf{a}'[i] = 0 \land (i \neq i \longrightarrow \mathbf{a}'[i] = \mathbf{a}[i]) \land (z \neq i \longrightarrow \mathbf{a}'[z] = \mathbf{a}[z]) \\ \land \quad z \le i \land \mathbf{a}'[z] \neq 0) . \end{array}$$

Remove the trivially satisfied conjuncts to obtain

$$\begin{aligned} &(z < i \longrightarrow \mathbf{a}[z] = 0) \\ \wedge \quad \mathbf{a}'[i] = 0 \land (z \neq i \longrightarrow \mathbf{a}'[z] = \mathbf{a}[z]) \\ \wedge \quad z \le i \land \mathbf{a}'[z] \neq 0) \;. \end{aligned}$$

Replace the arrays by uninterpreted functions:

$$\begin{array}{l} (z < i \longrightarrow F_a(z) = 0) \\ \wedge \quad F_{a'}(i) = 0 \land (z \neq i \longrightarrow F_{a'}(z) = F_a(z)) \\ \wedge \quad z \le i \land F_{a'}(z) \neq 0) \ . \end{array}$$

By distinguishing the three cases z < i, z = i, and z > i, it is easy to see that this formula is unsatisfiable.