

Motivation

Arrays are an important data structure:

- "Native" implementation in most processor architectures
- Offered by most programming languages
- $O(1)$ index operation
E.g., all data structures in Minisat are based on arrays
- Hardware: memories

Decision Procedures - Arrays

Basic Operations

Let $a \in T_{A}$ denote an array.

There are two basic operations on arrays:
(1) Reading: $a[i]$ is the value of the element that has index i
(2) Writing: the array a where element i has been replaced by e is denoted by $a\{i \longleftarrow e\}$

Outline

(1) Introduction

- Definition
- Basic Operations
- Syntax
- Semantics
- Example
(2) Arrays as Uninterpreted Functions
(3) A Reduction Algorithm for Array Logic
- Array Properties
- A Reduction Algorithm

Decision Procedures - Arrays

Formalization

- Mapping from an index type to an element type
- T_{I} : index type
- T_{E} : element type
- $T_{A}=\left(T_{I} \longrightarrow T_{E}\right)$: array type
- Assumption: there are relations

$$
={ }_{I} \subseteq\left(T_{I} \times T_{I}\right) \quad \text { and } \quad={ }_{E} \subseteq\left(T_{E} \times T_{E}\right)
$$

The subscript is omitted if the type of the operands is clear.

- The theories used to reason about the indices and the elements are called index theory and element theory, respectively.

Decision Procedures - Arrays

More About the Index Theory

What theory is suitable for the indices?

- Index logic should permit existential and universal quantification:
- "there exists an array element that is zero"
- "all elements of the array are greater than zero"
- Example: Presburger arithmetic, i.e., linear arithmetic over integers with quantification
n-dimensional arrays:
For $n \geq 2$, add $T_{A}(n-1)$ to the element type of $T_{A}(n)$.

A Very General Definition of Array Logic

Syntax defined by extending the syntactic rules for the index logic and the element logic

- atom $_{I}$: atom in the index logic
- atom $_{E}$: atom in the element logic
- term $_{I}$: term in the index logic
- term $_{E}$: term in the element logic

Decision Procedures - Arrays

Semantics

Main axiom:

$$
\begin{aligned}
& \text { Axiom (Read-over-write Axiom) } \\
& \qquad \forall a \in T_{A} . \forall e \in T_{E} . \\
& \forall i, j \in T_{I} . \\
& a\{i \longleftarrow e\}[j]= \begin{cases}e & : \quad i=j \\
a[j] & : \quad \text { otherwise } .\end{cases}
\end{aligned}
$$

Decision Procedures - Arrays

Program Verification Example II

Main step of the correctness argument: invariant in line 7 is maintained by the assignment in line 6

Verification condition:

$$
\begin{array}{ll}
& \left(\forall x \in \mathbb{N}_{0} \cdot x<i \longrightarrow \mathrm{a}[x]=0\right) \\
\wedge & \mathrm{a}^{\prime}=\mathrm{a}\{i \longleftarrow 0\} \\
\longrightarrow & \left(\forall x \in \mathbb{N}_{0} \cdot x \leq i \longrightarrow \mathrm{a}^{\prime}[x]=0\right)
\end{array}
$$

```
atom : atom}\mp@subsup{|}{|}{|}\mp@subsup{\mathrm{ atom }}{E}{}|\neg\mathrm{ atom | atom }\wedge\mathrm{ atom |
    \forall array-identifier. atom
\mp@subsup{term}{A}{}: array-identifier | term}A{\mp@subsup{\mathrm{ term }}{I}{~
term}\mp@subsup{E}{E}{: term}A[\mp@subsup{\mathrm{ term}}{I}{}
```

Equality between arrays a_{1} and a_{2} : write as $\forall i$. $a_{1}[i]=a_{2}[i]$

Decision Procedures - Arrays

Program Verification Example I

```
a: array 0..99 of integer;
integer;
for i:=0 to 99 do
```



```
    a[i]:=0;
```



```
done;
/* }\forallx\in\mp@subsup{\mathbb{N}}{0}{}.x\leq99\longrightarrow\textrm{a}[x]=0*
```


Decidability

Q: Is this logic decidable?

A: No, even if the combination of the index logic and the element logic is decidable

Arrays as Uninterpreted Functions

Fragment: no quantification over arrays

Arrays are functions! (From indices to elements)

Idea: use procedures for uninterpreted functions!

Example

$$
\left(i=j \wedge F_{a}(j)={ }^{\prime} z^{\prime}\right) \longrightarrow F_{a}(i)=' z '
$$

Apply Bryant's reduction:

$$
\left(i=j \wedge F_{1}^{*}={ }^{\prime} \mathrm{z}^{\prime}\right) \longrightarrow F_{2}^{*}={ }^{\prime} \mathrm{z}^{\prime}
$$

where

$$
F_{1}^{*}=f_{1} \quad \text { and } \quad F_{2}^{*}=\left\{\begin{array}{lll}
f_{1} & : & i=j \\
f_{2} & : & \text { otherwise }
\end{array}\right.
$$

Prove this using a decision procedure for equality logic.

Array Updates: Example I

Transform

$$
a\{i \longleftarrow e\}[i] \geq e
$$

into:

$$
a^{\prime}[i]=e \longrightarrow a^{\prime}[i] \geq e
$$

Example

$$
\left(i=j \wedge a[j]=' z{ }^{\prime}\right) \longrightarrow a[i]={ }^{\prime} z^{\prime}
$$

' z ': read as an integer number
F_{a} : uninterpreted function introduced for the array a :

$$
\left(i=j \wedge F_{a}(j)=' z^{\prime}\right) \longrightarrow F_{a}(i)={ }^{\prime} z^{\prime}
$$

Array Updates

What about $a\{i \longleftarrow e\}$?
(1) Replace $a\{i \longleftarrow e\}$ by a fresh variable a^{\prime} of array type
(2) Add two constraints:
a) $a^{\prime}[i]=e$ for the value that is written,
b) $\forall j \neq i . a^{\prime}[j]=a[j]$ for the values that are unchanged.

Compare to the read-over-write axiom!

This is called the write rule.

Array Updates: Example II
Transform

$$
a[0]=10 \longrightarrow a\{1 \longleftarrow 20\}[0]=10
$$

into:

$$
\left(a[0]=10 \wedge a^{\prime}[1]=20 \wedge\left(\forall j \neq 1 . a^{\prime}[j]=a[j]\right)\right) \longrightarrow a^{\prime}[0]=10
$$

and then replace a, a^{\prime} :

$$
\left(F_{a}(0)=10 \wedge F_{a^{\prime}}(1)=20 \wedge\left(\forall j \neq 1 . F_{a^{\prime}}(j)=F_{a}(j)\right)\right) \longrightarrow F_{a^{\prime}}(0)=10
$$

Q: Is this decidable in general?
Say Presburger plus uninterpreted functions?

Array Properties

Now: restricted class of array logic formulas in order to obtain decidability.
We consider formulas that are Boolean combinations of array properties.

Definition (array property)

A formula is an array property iff if it is of the form

$$
\forall i_{1}, \ldots, i_{k} \in T_{I} . \phi_{I}\left(i_{1}, \ldots, i_{k}\right) \longrightarrow \phi_{V}\left(i_{1}, \ldots, i_{k}\right)
$$

and satisfies the following conditions:
(1) The predicate ϕ_{I} must be an index guard.
(2) The index variables i_{1}, \ldots, i_{k} can only be used in array read expressions of the form $a\left[i_{j}\right]$.
The predicate ϕ_{V} is called the value constraint.

Decision Procedures - Arrays

Array Properties: Example

The extensionality rule defines the equality of two arrays a_{1} and a_{2} as element-wise equality. Extensionality is an array property:

$$
\forall i . a_{1}[i]=a_{2}[i]
$$

How about the array update?

$$
\mathrm{a}^{\prime}=\mathrm{a}\{i \longleftarrow 0\}
$$

Is this an array property as well?

Decision Procedures - Arrays

Algorithm

Input: Array property formula ϕ_{A} in NNF
Output: Formula $\phi_{U F}$
(1) Apply the write rule to remove all array updates from ϕ_{A}.
(2) Replace all existential quantifications of the form $\exists i \in T_{I} . P(i)$ by $P(j)$, where j is a fresh variable.
(3) Replace all universal quantifications of the form $\forall i \in T_{I} . P(i)$ by

$$
\bigwedge_{i \in \mathcal{I}(\phi)} P(i) .
$$

(9) Replace the array read operators by uninterpreted functions and obtain $\phi_{U F}$;
© return $\phi_{U F}$;

Index Guards

Definition (Index Guard)

A formula is an index guard iff if follows the grammar

iguard $:$	iguard \wedge iguard \mid iguard \vee iguard \mid
	iterm \leq iterm \mid iterm $=$ iterm
iterm $:$	$i_{1}\|\ldots\| i_{k} \mid$ term
term $:$	integer-constant \mid
	integer-constant.index-identifier \mid
	term + term

The "index-identifier" used in "term" must not be one of i_{1}, \ldots, i_{k}.

Decision Procedures - Array

Array Properties: Array Update

An array update expression can be replaced by adding two constraints:

$$
a^{\prime}[i]=0 \quad \wedge \quad \forall j \neq i . a^{\prime}[j]=a[j]
$$

The first conjunct is obviously an array property.

The second conjunct can be rewritten as

$$
\forall j .(j \leq i-1 \vee i+1 \leq j) \longrightarrow a^{\prime}[j]=a[j]
$$

Decision Procedures - Arrays

The Set I
$\mathcal{I}(\phi)$ denotes the index expressions that i might possibly be equal to.

Theorem: This set contains the following elements:
(1) All expressions used as an array index in ϕ that are not quantified variables.
(2) All expressions used inside index guards in ϕ that are not quantified variables.
(3) If ϕ contains none of the above, $\mathcal{I}(\phi)$ is $\{0\}$ in order to obtain a nonempty set of index expressions.

Example

We prove validity of

$$
\left(\forall x \in \mathbb{N}_{0} . x<i \longrightarrow \mathrm{a}[x]=0\right)
$$

$\wedge \mathbf{a}^{\prime}=\mathbf{a}\{i \longleftarrow 0\}$
$\longrightarrow\left(\forall x \in \mathbb{N}_{0} . x \leq i \longrightarrow \mathrm{a}^{\prime}[x]=0\right)$.

That is, we check satisfiability of

$$
\begin{array}{ll}
& \left(\forall x \in \mathbb{N}_{0} \cdot x<i \longrightarrow \mathrm{a}[x]=0\right) \\
\wedge & \mathrm{a}^{\prime}=\mathrm{a}\{i \longleftarrow 0\} \\
\wedge & \left(\exists x \in \mathbb{N}_{0} \cdot x \leq i \wedge \mathrm{a}^{\prime}[x] \neq 0\right) .
\end{array}
$$

Example

The set \mathcal{I} for our example is $\{i, z\}$.
Replace the two universal quantifications as follows:

$$
\begin{aligned}
& (i<i \longrightarrow \mathrm{a}[i]=0) \wedge(z<i \longrightarrow \mathrm{a}[z]=0) \\
\wedge & \mathrm{a}^{\prime}[i]=0 \wedge\left(i \neq i \longrightarrow \mathrm{a}^{\prime}[i]=\mathrm{a}[i]\right) \wedge\left(z \neq i \longrightarrow \mathrm{a}^{\prime}[z]=\mathrm{a}[z]\right) \\
\wedge & \left.z \leq i \wedge \mathrm{a}^{\prime}[z] \neq 0\right) .
\end{aligned}
$$

Remove the trivially satisfied conjuncts to obtain

$$
\begin{aligned}
& (z<i \longrightarrow \mathrm{a}[z]=0) \\
\wedge & \mathrm{a}^{\prime}[i]=0 \wedge\left(z \neq i \longrightarrow \mathrm{a}^{\prime}[z]=\mathrm{a}[z]\right) \\
\wedge & \left.z \leq i \wedge \mathrm{a}^{\prime}[z] \neq 0\right) .
\end{aligned}
$$

Example

Apply write rule:

$$
\left(\forall x \in \mathbb{N}_{0} . x<i \longrightarrow \mathrm{a}[x]=0\right)
$$

$\wedge \mathrm{a}^{\prime}[i]=0 \wedge \forall j \neq i . \mathrm{a}^{\prime}[j]=\mathrm{a}[j]$
$\wedge \quad\left(\exists x \in \mathbb{N}_{0} . x \leq i \wedge \mathbf{a}^{\prime}[x] \neq 0\right)$.

Instantiate existential quantifier with a new variable $z \in \mathbb{N}_{0}$:

$$
\begin{aligned}
& \left(\forall x \in \mathbb{N}_{0} . x<i \longrightarrow \mathrm{a}[x]=0\right) \\
\wedge & \mathrm{a}^{\prime}[i]=0 \wedge \forall j \neq i . \mathrm{a}^{\prime}[j]=\mathrm{a}[j] \\
\wedge & \left.z \leq i \wedge \mathrm{a}^{\prime}[z] \neq 0\right) .
\end{aligned}
$$

Example

Replace the arrays by uninterpreted functions:

$$
\left(z<i \longrightarrow F_{a}(z)=0\right)
$$

$$
\wedge F_{a^{\prime}}(i)=0 \wedge\left(z \neq i \longrightarrow F_{a^{\prime}}(z)=F_{a}(z)\right)
$$

$$
\left.\wedge \quad z \leq i \wedge F_{a^{\prime}}(z) \neq 0\right)
$$

By distinguishing the three cases $z<i, z=i$, and $z>i$, it is easy to see that this formula is unsatisfiable.

