Pointers
Chapter 8

Decision Procedures
An Algorithmic Point of View

D. Kroening O. Strichman
Revision 1.0
Outline

1. Introduction
 - Pointers and Their Applications
 - Dynamic Memory Allocation
 - Analysis of Programs with Pointers

2. A Simple Pointer Logic
 - Syntax
 - Semantics
 - Axiomatization of the Memory Model
 - Adding Structure Types

3. Modeling
 - Lists
 - Trees

4. Using the Semantic Translation
 - Applying the Memory Model Axioms
 - Pure Variables
 - Partitioning the Memory
Pointer: a program variable that refers to some other program construct

This other construct may be
- another variable, including a pointer,
- a function or method.
Motivation

- Pointers to other variables allow code fragments to operate on different sets of data
- This avoids inefficient copying of data
- Pointers enable dynamic data structures
- But: Many bugs relate to the (ab-)use of pointers
Memory cells of a computer have *addresses*, i.e., each cell has a unique number.

The value of a pointer is such a number.

memory model: the way the memory cells are addressed.
Formalization

Definition (Our Memory Model)

- Set of addresses A is a subinterval of the integers $\{0, \ldots, N - 1\}$
- Each address corresponds to a memory cell that is able to store one data word.
- The set of data words is denoted by D.
- **Memory valuation** $M : A \rightarrow D$

(this is a continuous, uniform address space)
Arrays and Structs

A variable may require more than one data word to be stored in memory

Examples:

- structs,
- arrays,
- double-precision floating-point
A variable may require more than one data word to be stored in memory

Examples:
- structs,
- arrays,
- double-precision floating-point

Let $\sigma(v)$ with $v \in V$ denote the size (in data words) of v.
Let V denote the set of variables.

Definition (memory layout)

A *memory layout* $L : V \rightarrow A$ is a mapping from V to an address A. The address of $v \in V$ is also called the *memory location* of v.

- The memory locations of the statically allocated variables are usually *non-overlapping*.
- The memory layout is not necessarily continuous (e.g., due to alignment restrictions).
```c
int var_a, var_b, var_c;
struct {
    int x;
    int y;
} S;
int array[4];
int *p = &var_c;

int main() {
    *p = 100;
}
```

Memory Layout:

<table>
<thead>
<tr>
<th>Address</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>var_a</td>
</tr>
<tr>
<td>1</td>
<td>var_b</td>
</tr>
<tr>
<td>2</td>
<td>var_c</td>
</tr>
<tr>
<td>3</td>
<td>S.x</td>
</tr>
<tr>
<td>4</td>
<td>S.y</td>
</tr>
<tr>
<td>5</td>
<td>array[0]</td>
</tr>
<tr>
<td>6</td>
<td>array[1]</td>
</tr>
<tr>
<td>7</td>
<td>array[2]</td>
</tr>
<tr>
<td>8</td>
<td>array[3]</td>
</tr>
<tr>
<td>9</td>
<td>p</td>
</tr>
</tbody>
</table>
Dynamic Memory Allocation

- There is an area of memory (called heap) for objects that are created at run time.

- A library maintains a list of the memory regions that are unused.

- Some function allocates a memory region of a given size and returns a pointer to it:
 - `malloc()` in C,
 - `new` in C++, C#, and Java.
Program analysis tools often need to reason about pointers

```c
void f(int *sum) {
    *sum = 0;

    for (i=0; i<10; i++)
        *sum = *sum + array[i];
}
```
Program analysis tools often need to reason about pointers

```c
void f(int *sum) {
    *sum = 0;
    for (i=0; i<10; i++)
        *sum = *sum + array[i];
}
```

- This program does not obey the obvious specification if the address held by `sum` is equal to the address of `i`.
- Aliasing not anticipated by the programmer is a common source of problems.
A Simple Pointer Logic

Definition (Pointer Logic)

Syntax:

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>formula</code></td>
<td>`formula ∧ formula</td>
</tr>
<tr>
<td><code>atom</code></td>
<td>`pointer = pointer</td>
</tr>
<tr>
<td></td>
<td>`pointer < pointer</td>
</tr>
<tr>
<td><code>pointer</code></td>
<td>`pointer − identifier</td>
</tr>
<tr>
<td></td>
<td>`&identifier</td>
</tr>
<tr>
<td><code>term</code></td>
<td>`identifier</td>
</tr>
<tr>
<td></td>
<td>`integer − constant</td>
</tr>
<tr>
<td><code>op</code></td>
<td>`+</td>
</tr>
</tbody>
</table>

Warning: `=` is equality here, not assignment
Let \(p, q \) denote pointer identifiers, and let \(i, j \) denote integer identifiers.

The following formulas are well-formed according to the grammar:

- \(*(p + i) = 1 \),
- \(*(p + *p) = 0 \),
- \(p = q \land *p = 5 \),
- \(** ** *p = 1 \),
- \(p < q \).
The following formulas are not permitted by the grammar:

- $p + i,$
- $p = i,$
- $(p + q),$
- $*1 = 1,$
- $p < i.$
We define the semantics by referring to a specific memory layout L and a specific memory valuation M.

Pointer logic formulas are predicates on M, L pairs.

We obtain a reduction to integer arithmetic and array logic.
We define a semantics using the function

$$[\cdot] : \mathcal{L}_P \longrightarrow \mathcal{L}_D$$

\(\mathcal{L}_P\): language of pointer expressions
\(\mathcal{L}_D\): expressions over variables with values from \(D\)
Defined recursively.

Boolean connectives:

\[
\begin{align*}
[f_1 \land f_2] &= \llbracket f_1 \rrbracket \land \llbracket f_2 \rrbracket \\
[\neg f] &= \neg \llbracket f \rrbracket
\end{align*}
\]

Predicates:

\[
\begin{align*}
[p_1 = p_2] &= \llbracket p_1 \rrbracket = \llbracket p_2 \rrbracket & \text{where } p_1, p_2 \text{ are pointer expressions} \\
[p_1 < p_2] &= \llbracket p_1 \rrbracket < \llbracket p_2 \rrbracket & \text{where } p_1, p_2 \text{ are pointer expressions} \\
[t_1 = t_2] &= \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket & \text{where } t_1, t_2 \text{ are terms} \\
[t_1 < t_2] &= \llbracket t_1 \rrbracket < \llbracket t_2 \rrbracket & \text{where } t_1, t_2 \text{ are terms}
\end{align*}
\]
Non-pointer terms:

\[
\begin{align*}
[v] & = M[L[v]] & \text{where } v \in V \text{ is a variable with } \sigma(v) = 1 \\
[t_1 \text{ op } t_2] & = [t_1] \text{ op } [t_2] & \text{where } t_1, t_2 \text{ are terms} \\
[c] & = c & \text{where } c \text{ is an integer constant} \\
[v[t]] & = M[L[v] + [t]] & \text{where } v \text{ is an array identifier, } t \text{ is a term}
\end{align*}
\]
Pointer-related expressions:

\[
\begin{align*}
[p] & = M[L[p]] & \text{where } p \text{ is a pointer identifier} \\
[p + t] & = [p] + [t] & \text{where } p \text{ is a pointer expression, } t \text{ is a term} \\
& [\& v] & = L[v] & \text{where } v \in V \text{ is a variable} \\
& [\& * p] & = [p] & \text{where } p \text{ is a pointer expression} \\
\text{NULL} & = 0 \\
*p & = M[[p]] & \text{where } p \text{ is a pointer expression}
\end{align*}
\]
A pointer p points to a variable x if $M[L[p]] = L[x]$

Shorthand: $p \rightarrow z$ for $*p = z$

Warning: the meaning $p + i$ does not depend on the type of p
Example I

Let a be an array identifier:

$$\ast((\&a) + 1) = a[1]$$

The definition expands as follows:

$$[\ast((\&a) + 1) = a[1]]$$
Example I

Let \(a \) be an array identifier:

\[
*(\&(a) + 1) = a[1]
\]

The definition expands as follows:

\[
\llbracket \!
Example I

Let a be an array identifier:

$$*((&a) + 1) = a[1]$$

The definition expands as follows:

$$[*((&a) + 1) = a[1]] \iff [*[(&a) + 1)] = [a[1]]$$
$$\iff M[[(&a) + 1]] = M[L[a] + [1]]$$

The last formula is obviously valid.
Example I

Let a be an array identifier:

$$\ast((\&a) + 1) = a[1]$$

The definition expands as follows:

$$\llbracket\ast((\&a) + 1) = a[1]\rrbracket \iff \llbracket\ast((\&a) + 1)\rrbracket = \llbracket a[1]\rrbracket$$

$$\iff M[\llbracket(\&a) + 1\rrbracket] = M[L[a] + 1]$$

The last formula is obviously valid.
Let \(a \) be an array identifier:

\[*((\&a) + 1) = a[1] \]

The definition expands as follows:

\[
\begin{align*}
\left[*((\&a) + 1) = a[1] \right] & \iff \left[*((\&a) + 1) \right] = \llbracket a[1] \rrbracket \\
& \iff M[\llbracket (\&a) + 1 \rrbracket] = M[L[a] + \llbracket 1 \rrbracket] \\
& \iff M[\llbracket \&a \rrbracket + \llbracket 1 \rrbracket] = M[L[a] + 1] \\
& \iff M[L[a] + 1] = M[L[a] + 1]
\end{align*}
\]

The last formula is obviously valid.
The translated formula must evaluate to true for any L and M!

The following formula is not valid:

$$*p = 1 \quad \rightarrow \quad x = 1$$

For $p \neq &x$, this formula evaluates to false.
It is possible to exploit assumptions made about the memory model.

Depends highly on the architecture!

Here: we formalize properties that most architectures comply with.
On most architectures, the following two formulas are valid:

1. \(\&x \neq \text{NULL} \)
2. \(\&x \neq \&y \)

(1) translates into \(L[x] \neq 0 \) and relies on the fact that no object has address 0.

(2) relies on non-overlapping addresses
Memory Axiom 1

Memory Model Axiom (“No object has address 0”)

\[\forall v \in V. \ L[v] \neq 0 \]
Overlapping Objects

How do we address (2)?

Suggestion:

\[\forall v_1, v_2 \in V. \ v_1 \neq v_2 \rightarrow L[v_1] \neq L[v_2] \]
Memory Axioms 2 and 3

The following two conditions together are stronger:

Memory Model Axiom ("Objects have size at least one")

\[\forall v \in V. \sigma(v) \geq 1 \]

Memory Model Axiom ("Objects do not overlap")

\[\forall v_1, v_2 \in V. v_1 \neq v_2 \quad \rightarrow \quad \{L[v_1], \ldots, L[v_1] + \sigma(v_1) - 1\} \cap \{L[v_2], \ldots, L[v_2] + \sigma(v_2) - 1\} = \emptyset. \]
Some code relies on additional, architecture-specific guarantees, e.g.,

- byte ordering
- endianness,
- alignment,
- structure layout.

Some program analysis tools allow adding such rules.
Convenient way to implement data structures

We add this as a syntactic extension

Notation: $s.f$ to denote the value of the field f in the structure s
Mapping to Array Types

- Each field of the structure is assigned a unique offset: \(o(f) \)
- Meaning of \(s.f \):
 \[
 s.f \equiv \star((\&s) + o(f))
 \]
- Following PASCAL and ANSI-C syntax:
 \[
 p\rightarrow f \equiv (\star p).f
 \]
- Adopted from separation logic:
 \[
 p \leftarrow a, b, c, \ldots \quad \equiv \quad \star (p + 0) = a \quad \land \\
 \star (p + 1) = b \quad \land \\
 \star (p + 2) = c \quad \ldots .
 \]
Modeling Lists

- Simplest dynamically allocated data structure

- Realized by means of a structure type that contains fields for a next pointer
List Example

\[
p \rightarrow 't', p_1 \\
\land p_1 \rightarrow 'e', p_2 \\
\land p_2 \rightarrow 'x', p_3 \\
\land p_3 \rightarrow 't', \text{NULL} .
\]
Define a recursive shorthand for the \(i \)-th member of a list:

\[
\begin{align*}
\text{list-elem}(p, 0) & \triangleq p, \\
\text{list-elem}(p, i) & \triangleq \text{list-elem}(p, i - 1) \rightarrow n \quad \text{for } i \geq 1
\end{align*}
\]

We use '\(n \)' as the next pointer field.

Now define the shorthand \(\text{list}(p, l) \):

\[
\text{list}(p, l) \triangleq \text{list-elem}(p, l) = \text{NULL}
\]
A linked list is **cyclic** if the pointer of the last element points to the first one:

```
. . . .
  e
  t
  t
  p
```

Would this work?

```
my-list (p, l) = list-elem (p, l) = p
```
A linked list is *cyclic* if the pointer of the last element points to the first one:

Would this work?

\[
\text{my-list}(p, l) \doteq \text{list-elem}(p, l) = p.
\]
Unfortunately, the following satisfies $\text{my-list}(p, 4)$:

\[p \rightarrow 't' \]

→ need to rule out sharing
Cyclic Lists

Define a shorthand ‘overlap’ as follows:

\[
\text{overlap}(p, q) \equiv p = q \lor p + 1 = q \lor p = q + 1
\]

Use to state that all list elements are pairwise disjoint:

\[
\text{list-disjoint}(p, 0) \equiv \text{TRUE},
\]
\[
\text{list-disjoint}(p, l) \equiv \text{list-disjoint}(p, l - 1) \land \\
\forall 0 \leq i < l - 1. \neg \text{overlap} (\text{list-elem}(p, i), \text{list-elem}(p, l - 1))
\]

Grows quadratically in \(l \)!
Goal: model binary search tree

- Pointer to the left-hand child: \(l \)
- Pointer to the right-hand child: \(r \)
Idea:

\[(n.l \neq \text{NULL} \rightarrow n.l \rightarrow x < n.x) \land (n.r \neq \text{NULL} \rightarrow n.r \rightarrow x > n.x)\].
Idea:

\[
(n.l \neq \text{NULL} \rightarrow n.l\rightarrow x < n.x) \\
\land (n.r \neq \text{NULL} \rightarrow n.r\rightarrow x > n.x)
\] .

Not strong enough for \(O(h)\) lookup!
Let us first define the transitive closure of a relation \(R \):

\[
\begin{align*}
TC^1_R(p, q) & \equiv R(p, q) \\
TC^i_R(p, q) & \equiv \exists p'. \ TC^{-1}_R(p', p') \land R(p', q) \\
TC(p, q) & \equiv \exists i. \ TC^i_R(p, q)
\end{align*}
\]
Now define a predicate $\text{tree-reach}(p, q)$:

$$\text{tree-reach}(p, q) \doteq p \neq \text{NULL} \land q \neq \text{NULL} \land (p = q \lor p\rightarrow l = q \lor p\rightarrow r = q)$$

Use the transitive closure:

$$\text{tree-reach}^*(p, q) \iff \text{TC}_{\text{tree-reach}}(p, q)$$
New definition:

\[(\forall p. \text{tree-reach}^*(n.l, p) \rightarrow p \rightarrow x < n.x) \land \ (\forall p. \text{tree-reach}^*(n.r, p) \rightarrow p \rightarrow x > n.x)\].
Using the Semantic Translation

$\llbracket \cdot \rrbracket$ is a decision procedure!

1. Define $\varphi' = \llbracket \varphi \rrbracket$
2. Pass φ' to procedure for integers and arrays
Let x be a variable, and p be a pointer.

\[p = \&x \land x = 1 \longrightarrow *p = 1 \]
Example I

Let x be a variable, and p be a pointer.

$p = \&x \land x = 1 \implies *p = 1$

Use semantic definition:

$[[p = \&x \land x = 1 \implies *p = 1]]$

$\iff [[p = \&x]] \land [[x = 1]] \implies [[*p = 1]]$

$\iff [[p]] = [[\&x]] \land [[x]] = 1 \implies [[*p]] = 1$

$\iff M[L[p]] = L[x] \land M[L[x]] = 1 \implies M[M[L[p]]] = 1.$

The last formula is obviously valid.
Example II

\[[p \leftarrow x \rightarrow p = \&x] \]

\[\iff \quad [p \leftarrow x] \rightarrow [p = \&x] \]

\[\iff \quad [*p = x] \rightarrow [p] = [\&x] \]

\[\iff \quad [*p] = [x] \rightarrow M[L[p]] = L[x] \]

\[\iff \quad M[M[L[p]]] = M[L[x]] \rightarrow M[L[p]] = L[x] \]
Example II

\[[p \leftarrow x \longrightarrow p = &x]\]
\[\iff [p \leftarrow x] \longrightarrow [p = &x]\]
\[\iff [*p = x] \longrightarrow [p] = [&x]\]
\[\iff [*p] = [x] \longrightarrow M[L[p]] = L[x]\]
\[\iff M[M[L[p]]] = M[L[x]] \longrightarrow M[L[p]] = L[x]\]

Counterexample:

What if the formula relies on a memory model axiom?

Example:

\[
\sigma(x) = 2 \implies \&y \neq \&x + 1
\]

The semantic translation yields:

\[
\sigma(x) = 2 \implies L[y] \neq L[x] + 1
\]

This needs the no-overlapping axiom:

\[
\{L[x], \ldots, L[x] + \sigma(x) - 1\} \cap \{L[y], \ldots, L[y] + \sigma(y) - 1\} = \emptyset
\]
Applying the Memory Model Axioms

1. Transform into linear arithmetic over the integers as follows:

\[(L[x] + \sigma(x) - 1 < L[y]) \lor (L[x] > L[y] + \sigma(y) - 1)\]

2. Using \(\sigma(x) = 2\) and \(\sigma(y) \geq 1\):

\[(L[x] + 1 < L[y]) \lor (L[x] > L[y])\]

3. Now strong enough to imply \(L[y] \neq L[x] + 1\)
\[[x = y \longrightarrow y = x] \]
\[\iff [x = y] \longrightarrow [y = x] \]
\[\iff M[L[x]] = M[L[y]] \longrightarrow M[L[y]] = M[L[x]] . \]

Unnecessary burden for the array decision procedure!
Pure Variables

\[[x = y \rightarrow y = x] \]
\[\iff [x = y] \rightarrow [y = x] \]
\[\iff M[L[x]] = M[L[y]] \rightarrow M[L[y]] = M[L[x]] . \]

Unnecessary burden for the array decision procedure!

Should have done:

\[x = y \rightarrow y = x \]
Obvious idea:

if the address of a variable x is not referred to, translate it to a new variable Υ_x instead of $M[L[x]]$
Observation: the run time of a decision procedure for array logic depends on the number of different expressions that are used to index a particular array.
Example

\[*p = 1 \land *q = 1 \]

This is

\[M[\U p] = 1 \land M[\U q] = 1 \]

- \(p \) and \(q \) might alias
- But there is no reason why they have to!
- Let’s assume they don’t!
We partition M into M_1 and M_2:

$$M_1[γ_p] = 1 \land M_2[γ_q] = 1$$

- This increases the number of array variables
- But: the number of different indices per array decreases!
- Typically improves performance
Partitioning the Memory

Cannot always be applied:

\[p = q \implies *p = *q \]

- Obviously valid
- If we partition as before, the translated formula is no longer valid:

\[\Upsilon_p = \Upsilon_q \implies M_1[\Upsilon_p] = M_2[\Upsilon_q] \]
Deciding if the optimization is applicable is in general as hard as deciding φ itself

\rightarrow Do an approximation based on a syntactic test
Deciding if the optimization is applicable is in general as hard as deciding φ itself.

→ Do an approximation based on a syntactic test

Definition

Two pointer expressions p and q are *related* if both p and q are used inside the same relational expression.

Write $p \approx q$ for $TC_{related}$

Partition according to \approx!