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Fourier-Motzkin Variable Elimination

Goal: decide satisfiability of conjunction of linear constraints over
reals ∧

1≤i≤m

∑
1≤j≤n

ai,jxj ≤ bi

Earliest method for solving linear inequalities

Discovered in 1826 by Fourier, re-discovered by Motzkin in 1936

Basic idea of variable elimination:

Pick one variable and eliminate it
Continue until all variables but one are eliminated
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Linear Arithmetic over the Reals

Input: A system of conjoined linear inequalities Ax ≤ b

m constraints


a11 a12 · · · · · · a1n

a21 a22
. . .

...
...

. . .
...

am1 a22 · · · · · · amn




x1
...
...

xn

 ≤


b1
...
...

bn


n variables
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Removing unbounded variables

Iteratively remove variables that are not bounded in both ways
(and all the constraints that use them)

The new problem has a solution iff the old problem has one!

8x ≥ 7y
x ≥ 3
y ≥ z
z ≥ 10

20 ≥ z

−→
y ≥ z
z ≥ 10

20 ≥ z
−→ z ≥ 10

20 ≥ z

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 6 / 11



Removing unbounded variables

Iteratively remove variables that are not bounded in both ways
(and all the constraints that use them)

The new problem has a solution iff the old problem has one!

8x ≥ 7y
x ≥ 3
y ≥ z
z ≥ 10

20 ≥ z

−→
y ≥ z
z ≥ 10

20 ≥ z
−→ z ≥ 10

20 ≥ z

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 6 / 11



Removing unbounded variables

Iteratively remove variables that are not bounded in both ways
(and all the constraints that use them)

The new problem has a solution iff the old problem has one!

8x ≥ 7y
x ≥ 3
y ≥ z
z ≥ 10

20 ≥ z

−→
y ≥ z
z ≥ 10

20 ≥ z

−→ z ≥ 10
20 ≥ z

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 6 / 11



Removing unbounded variables

Iteratively remove variables that are not bounded in both ways
(and all the constraints that use them)

The new problem has a solution iff the old problem has one!

8x ≥ 7y
x ≥ 3
y ≥ z
z ≥ 10

20 ≥ z

−→
y ≥ z
z ≥ 10

20 ≥ z

−→ z ≥ 10
20 ≥ z

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 6 / 11



Removing unbounded variables

Iteratively remove variables that are not bounded in both ways
(and all the constraints that use them)

The new problem has a solution iff the old problem has one!

8x ≥ 7y
x ≥ 3
y ≥ z
z ≥ 10

20 ≥ z

−→
y ≥ z
z ≥ 10

20 ≥ z
−→ z ≥ 10

20 ≥ z

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 6 / 11



Partitioning the Constraints

1. When eliminating xn, partition the constraints according to the
coefficient ain:

ai,n > 0: upper bound βi

ai,n < 0: lower bound βi

n∑
j=1

ai,j · xj ≤ bi

⇒ ai,n · xn ≤ bi −
n−1∑
j=1

ai,j · xj

⇒ xn ≤ bi

ai,n
−

n−1∑
j=1

ai,j

ai,n
· xj =: βi
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Example for Upper and Lower Bounds

Category?

(1) x1 − x2 ≤ 0

Upper bound

(2) x1 − x3 ≤ 0

Upper bound

(3) −x1 + x2 + 2x3 ≤ 0

Lower bound

(4) −x3 ≤ −1

Assume we eliminate x1.
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Adding the constraints

2. For each pair of a lower bound al,n < 0 and

upper bound au,n > 0, we have

βl ≤ xn ≤ βu

3. For each such pair, add the constraint

βl ≤ βu
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Fourier-Motzkin: Example

Category?

(1) x1 − x2 ≤ 0

Upper bound

(2) x1 − x3 ≤ 0

Upper bound

(3) −x1 + x2 + 2x3 ≤ 0

Lower bound

(4) −x3 ≤ −1

Lower bound
we eliminate x1

(5) 2x3 ≤ 0 (from 1,3)

Upper bound

(6) x2 + x3 ≤ 0 (from 2,3)

Upper bound

we eliminate x3

(7) 0 ≤ −1 (from 4,5)

→ Contradiction (the system is UNSAT)
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Complexity

Worst-case complexity:

m → m2

→ (m2)2 → . . . → m2n

Heavy! So why is it so popular in verification?

The bottleneck: case-splitting
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