Bit-Vectors

Chapter 6

Decision Procedures

 An Algorithmic Point of View

D.Kroening
O.Strichman

Outline

(1) Introduction to Bit-Vector Logic
(2) Syntax
(3) Semantics

4 Decision procedures for Bit-Vector Logic

- Flattening Bit-Vector Logic
- Incremental Flattening

Decision Procedures for System-Level Software

What kind of logic do we need for system-level software?

```
State { int created = 0; }
IoCreateDevice.exit {
    if ($return==STATUS_SUCCESS)
        created = 1;
}
IoDeleteDevice.exit { created = 0; }
fun_AddDevice.exit {
    if (created && (pdevobj->Flags & DO_DEVICE_INITIALIZING) != 0) {
        abort "AddDevice routine failed to set "
        "~DO_DEVICE_INITIALIZING flag";
    }
}
```

An Invariant of Microsoft Windows Device Drivers

Decision Procedures for System-Level Software

What kind of logic do we need for system-level software?

```
State { int created = 0; }
IoCreateDevice.exit {
    if ($return==STATUS_SUCCESS)
        created = 1;
}
IoDeleteDevice.exit { created = 0; }
fun_AddDevice.exit {
    if (created && (pdevobj->Flags & DO_DEVICE_INITIALIZING) != 0) {
        abort "AddDevice routine failed to set "
        "~DO_DEVICE_INITIALIZING flag";
    }
}
```

An Invariant of Microsoft Windows Device Drivers

Decision Procedures for System-Level Software

What kind of logic do we need for system-level software?

```
State { int created = 0; }
IoCreateDevice.exit {
    if ($return==STATUS_SUCCESS)
        created = 1;
}
IoDeleteDevice.exit { created = 0; }
    Bit-wise AND
fun_AddDevice.exit {
    if (created && (pdevobj->Flags & DO_DEVICE_INITIALIZING) != 0) {
        abort "AddDevice routine failed to set "
        "~DO_DEVICE_INITIALIZING flag";
    }
}
```

An Invariant of Microsoft Windows Device Drivers

Decision Procedures for System-Level Software

What kind of logic do we need for system-level software?

- We need bit-vector logic - with bit-wise operators, arithmetic overflow
- We want to scale to large programs - must verify large formulas

Decision Procedures for System-Level Software

What kind of logic do we need for system-level software?

- We need bit-vector logic - with bit-wise operators, arithmetic overflow
- We want to scale to large programs - must verify large formulas
- Examples of program analysis tools that generate bit-vector formulas:
- CBMC
- SATABS
- F-Soft (NEC)
- SATURN (Stanford, Alex Aiken)
- EXE (Stanford, Dawson Engler, David Dill)
- Variants of those developed at IBM, Microsoft

Bit-Vector Logic: Syntax

formula : formula \vee formula $\mid \neg$ formula \mid atom atom : term rel term | Boolean-Identifier \mid term[constant]

$$
\text { rel }:=\mid<
$$

$$
\text { term : term op term } \mid \text { identifier } \mid \sim \text { term } \mid \text { constant } \mid
$$

atom?term:term

$$
\text { term }[\text { constant }: \text { constant }] \mid \operatorname{ext}(\text { term })
$$

$$
o p:+|-|\cdot| /|\ll| \gg| \&| ||\oplus| \circ
$$

Bit-Vector Logic: Syntax

formula : formula \vee formula $\mid \neg$ formula \mid atom atom : term rel term | Boolean-Identifier | term[constant]

- $\sim x$: bit-wise negation of x
- $\operatorname{ext}(x)$: sign- or zero-extension of x
- $x \ll d$: left shift with distance d
- $x \circ y$: concatenation of x and y

Semantics

Danger!

$$
(x-y>0) \Longleftrightarrow(x>y)
$$

Valid over \mathbb{R} / \mathbb{N}, but not over the bit-vectors. (Many compilers have this sort of bug)

Width and Encoding

- The meaning depends on the width and encoding of the variables.

Width and Encoding

- The meaning depends on the width and encoding of the variables.
- Typical encodings:
- Binary encoding

$$
\langle x\rangle_{U}:=\sum_{i=0}^{l-1} a_{i} \cdot 2^{i}
$$

- Two's complement

$$
\langle x\rangle_{S}:=-2^{n-1} \cdot a_{n-1}+\sum_{i=0}^{l-2} a_{i} \cdot 2^{i}
$$

- But maybe also fixed-point, floating-point, ...

Examples

$\begin{aligned}\langle 11001000\rangle_{U} & =200 \\ \langle 11001000\rangle_{S} & =-128+64+8=-56 \\ \langle 01100100\rangle_{S} & =100\end{aligned}$

Width and Encoding

Notation to clarify width and encoding:

$$
x_{[32] S}
$$

Width and Encoding

Notation to clarify width and encoding:

Width in bits
$\boldsymbol{x}[32] S$
U: unsigned binary
S: signed two's complement

Bit-vectors Made Formal

Definition (Bit-Vector)

A bit-vector is a vector of Boolean values with a given length l :

$$
b:\{0, \ldots, l-1\} \longrightarrow\{0,1\}
$$

Bit-vectors Made Formal

Definition (Bit-Vector)

A bit-vector is a vector of Boolean values with a given length l :

$$
b:\{0, \ldots, l-1\} \longrightarrow\{0,1\}
$$

The value of bit number i of x is $x(i)$.

We also write x_{i} for $x(i)$.

Lambda-Notation for Bit-Vectors

λ expressions are functions without a name

Lambda-Notation for Bit-Vectors

λ expressions are functions without a name
Examples:

- The vector of length l that consists of zeros:

$$
\lambda i \in\{0, \ldots, l-1\} .0
$$

- A function that inverts (flips all bits in) a bit-vector:

$$
b v-\operatorname{invert}(x):=\lambda i \in\{0, \ldots, l-1\} . \neg x_{i}
$$

- A bit-wise OR:

$$
b v-\text { or }(x, y):=\lambda i \in\{0, \ldots, l-1\} \cdot\left(x_{i} \vee y_{i}\right)
$$

\Longrightarrow we now have semantics for the bit-wise operators.

Example

$$
\left(x_{[10]} \circ y_{[5]}\right)[14] \Longleftrightarrow x[9]
$$

Example

$$
\left(x_{[10]} \circ y_{[5]}\right)[14] \Longleftrightarrow x[9]
$$

- This is translated as follows:

$$
x[9]=x_{9}
$$

Example

$$
\left(x_{[10]} \circ y_{[5]}\right)[14] \Longleftrightarrow x[9]
$$

- This is translated as follows:

$$
x[9]=x_{9}
$$

$$
(x \circ y)=\lambda i .(i<5) ? y_{i}: x_{i-5}
$$

Example

$$
\left(x_{[10]} \circ y_{[5]}\right)[14] \Longleftrightarrow x[9]
$$

- This is translated as follows:

$$
\begin{gathered}
x[9]=x_{9} \\
(x \circ y)=\lambda i .(i<5) ? y_{i}: x_{i-5} \\
(x \circ y)[14]=\left(\lambda i .(i<5) ? y_{i}: x_{i-5}\right)(14)
\end{gathered}
$$

Example

$$
\left(x_{[10]} \circ y_{[5]}\right)[14] \Longleftrightarrow x[9]
$$

- This is translated as follows:

$$
\begin{gathered}
x[9]=x_{9} \\
(x \circ y)=\lambda i .(i<5) ? y_{i}: x_{i-5} \\
(x \circ y)[14]=\left(\lambda i .(i<5) ? y_{i}: x_{i-5}\right)(14)
\end{gathered}
$$

- Final result:

$$
\left(\lambda i .(i<5) ? y_{i}: x_{i-5}\right)(14) \Longleftrightarrow x_{9}
$$

Semantics for Arithmetic Expressions

What is the output of the following program?

```
unsigned char number = 200;
number = number + 100; printf("Sum: \%d \({ }^{n}\) ", number);
```


Semantics for Arithmetic Expressions

What is the output of the following program?

$$
\begin{aligned}
& \text { unsigned char number }=200 ; \\
& \text { number }=\text { number }+100 ; \\
& \text { printf("Sum: \%d } \backslash n " \text {, number); }
\end{aligned}
$$

On most architectures, this is 44!

$$
\begin{aligned}
11001000 & =200 \\
+\quad 01100100 & =100 \\
\hline=00101100 & =44
\end{aligned}
$$

Semantics for Arithmetic Expressions

What is the output of the following program?

$$
\begin{aligned}
& \text { unsigned char number }=200 ; \\
& \text { number }=\text { number }+100 ; \\
& \text { printf("Sum: \%d\n", number); }
\end{aligned}
$$

On most architectures, this is 44!

$$
\begin{aligned}
11001000 & =200 \\
+\quad 01100100 & =100 \\
\hline=00101100 & =44
\end{aligned}
$$

\Longrightarrow Bit-vector arithmetic uses modular arithmetic!

Semantics for Arithmetic Expressions

Semantics for addition, subtraction:

$$
\begin{aligned}
a_{[l]}+{ }_{U} b_{[l]}=c_{[l]} & \Longleftrightarrow \quad\langle a\rangle_{U}+\langle b\rangle_{U}=\langle c\rangle_{U} \quad \bmod 2^{l} \\
a_{[l]}-U b_{[l]}=c_{[l]} & \Longleftrightarrow \quad\langle a\rangle_{U}-\langle b\rangle_{U}=\langle c\rangle_{U} \quad \bmod 2^{l}
\end{aligned}
$$

Semantics for Arithmetic Expressions

Semantics for addition, subtraction:

$$
\begin{aligned}
a_{[l]}+{ }_{U} b_{[l]}=c_{[l]} & \Longleftrightarrow \quad\langle a\rangle_{U}+\langle b\rangle_{U}=\langle c\rangle_{U} \quad \bmod 2^{l} \\
a_{[l]}-{ }_{U} b_{[l]}=c_{[l]} & \Longleftrightarrow \quad\langle a\rangle_{U}-\langle b\rangle_{U}=\langle c\rangle_{U} \bmod 2^{l} \\
a_{[l]}+{ }_{S} b_{[l]}=c_{[l]} & \Longleftrightarrow \quad\langle a\rangle_{S}+\langle b\rangle_{S}=\langle c\rangle_{S} \bmod 2^{l} \\
a_{[l]}-{ }_{S} b_{[l]}=c_{[l]} & \Longleftrightarrow\langle a\rangle_{S}-\langle b\rangle_{S}=\langle c\rangle_{S} \bmod 2^{l}
\end{aligned}
$$

Semantics for Arithmetic Expressions

Semantics for addition, subtraction:

$$
\begin{aligned}
a_{[l]}+{ }_{U} b_{[l]}=c_{[l]} & \Longleftrightarrow \quad\langle a\rangle_{U}+\langle b\rangle_{U}=\langle c\rangle_{U} \quad \bmod 2^{l} \\
a_{[l]}-{ }_{U} b_{[l]}=c_{[l]} & \Longleftrightarrow \quad\langle a\rangle_{U}-\langle b\rangle_{U}=\langle c\rangle_{U} \bmod 2^{l} \\
a_{[l]}+{ }_{S} b_{[l]}=c_{[l]} & \Longleftrightarrow \quad\langle a\rangle_{S}+\langle b\rangle_{S}=\langle c\rangle_{S} \bmod 2^{l} \\
a_{[l]}-{ }_{S} b_{[l]}=c_{[l]} & \Longleftrightarrow \quad\langle a\rangle_{S}-\langle b\rangle_{S}=\langle c\rangle_{S} \bmod 2^{l}
\end{aligned}
$$

We can even mix the encodings:

$$
a_{[l] U}+{ }_{U} b_{[l] S}=c_{[l] U} \quad \Longleftrightarrow \quad\langle a\rangle_{U}+\langle b\rangle_{S}=\langle c\rangle_{U} \bmod 2^{l}
$$

Semantics for Relational Operators

Semantics for $<, \leq, \geq$, and so on:

$$
\begin{aligned}
& a_{[l] U}<b_{[l] U} \Longleftrightarrow \\
& a_{[l] S}<b_{[l] S} \Longleftrightarrow\langle a\rangle_{U}<\langle b\rangle_{U} \\
&\langle a\rangle_{S}<\langle b\rangle_{S}
\end{aligned}
$$

Semantics for Relational Operators

Semantics for $<, \leq, \geq$, and so on:

$$
\begin{aligned}
& a_{[l] U}<b_{[l] U} \Longleftrightarrow \\
& a_{[l] S}<b_{[l] S} \Longleftrightarrow\langle a\rangle_{U}<\langle b\rangle_{U} \\
&\langle a\rangle_{S}<\langle b\rangle_{S}
\end{aligned}
$$

Mixed encodings:

$$
\begin{aligned}
a_{[l] U}<b_{[l] S} & \Longleftrightarrow \\
a_{[l] S}<b_{[l] U} & \Longleftrightarrow\langle a\rangle_{U}<\langle b\rangle_{S} \\
{ }^{2} & \langle a\rangle_{S}<\langle b\rangle_{U}
\end{aligned}
$$

Note that most compilers don't support comparisons with mixed encodings.

Complexity

- Satisfiability is undecidable for an unbounded width, even without arithmetic.

Complexity

- Satisfiability is undecidable for an unbounded width, even without arithmetic.
- It is NP-complete otherwise.

A Simple Decision Procedure

- Transform Bit-Vector Logic to Propositional Logic
- Most commonly used decision procedure
- Also called 'bit-blasting'

A Simple Decision Procedure

- Transform Bit-Vector Logic to Propositional Logic
- Most commonly used decision procedure
- Also called 'bit-blasting'

Bit-Vector Flattening
(1) Convert propositional part as before
(2) Add a Boolean variable for each bit of each sub-expression (term)
(3) Add constraint for each sub-expression

We denote the new Boolean variable for bit i of term t by $\mu(t)_{i}$.

Bit-vector Flattening

What constraints do we generate for a given term?

Bit-vector Flattening

What constraints do we generate for a given term?

- This is easy for the bit-wise operators.
- Example for $\left.a\right|_{[l]} b$:

$$
\bigwedge_{i=0}^{l-1}\left(\mu(t)_{i}=\left(a_{i} \vee b_{i}\right)\right)
$$

(read $x=y$ over bits as $x \Longleftrightarrow y$)

Bit-vector Flattening

What constraints do we generate for a given term?

- This is easy for the bit-wise operators.
- Example for $\left.a\right|_{[l]} b$:

$$
\bigwedge_{i=0}^{l-1}\left(\mu(t)_{i}=\left(a_{i} \vee b_{i}\right)\right)
$$

(read $x=y$ over bits as $x \Longleftrightarrow y$)

- We can transform this into CNF using Tseitin's method.

Flattening Bit-Vector Arithmetic

How to flatten $a+b$?

Flattening Bit-Vector Arithmetic

How to flatten $a+b$?
\longrightarrow we can build a circuit that adds them!

Full Adder

$$
\begin{aligned}
& s \equiv(a+b+i) \bmod 2 \equiv a \oplus b \oplus i \\
& o \equiv(a+b+i) \operatorname{div} 2 \equiv a \cdot b+a \cdot i+b \cdot i
\end{aligned}
$$

The full adder in CNF:

$$
\begin{aligned}
& (a \vee b \vee \neg o) \wedge(a \vee \neg b \vee i \vee \neg o) \wedge(a \vee \neg b \vee \neg i \vee o) \wedge \\
& (\neg a \vee b \vee i \vee \neg o) \wedge(\neg a \vee b \vee \neg i \vee o) \wedge(\neg a \vee \neg b \vee o)
\end{aligned}
$$

Flattening Bit-Vector Arithmetic

Ok, this is good for one bit! How about more?

Flattening Bit-Vector Arithmetic

Ok, this is good for one bit! How about more?

```
8-Bit ripple carry adder (RCA)
```


- Also called carry chain adder
- Adds l variables
- Adds $6 \cdot l$ clauses

Multipliers

- Multipliers result in very hard formulas
- Example:

$$
a \cdot b=c \wedge b \cdot a \neq c \wedge x<y \wedge x>y
$$

CNF: About 11000 variables, unsolvable for current SAT solvers

- Similar problems with division, modulo
- Q: Why is this hard?

Multipliers

- Multipliers result in very hard formulas
- Example:

$$
a \cdot b=c \wedge b \cdot a \neq c \wedge x<y \wedge x>y
$$

CNF: About 11000 variables, unsolvable for current SAT solvers

- Similar problems with division, modulo
- Q: Why is this hard?
- Q: How do we fix this?

Incremental Flattening

$\varphi_{s k}$: Boolean part of φ

F : set of terms that are in the encoding

Incremental Flattening

$\varphi_{s k}$: Boolean part of φ
F : set of terms that are in the encoding

Incremental Flattening

$\varphi_{s k}$: Boolean part of φ

F : set of terms that are in the encoding

Incremental Flattening

$\varphi_{s k}$: Boolean part of φ
F : set of terms that are in the encoding
I : set of terms that are inconsistent with the current assignment

Incremental Flattening

$\varphi_{s k}$: Boolean part of φ
F : set of terms that are in the encoding
I : set of terms that are inconsistent with the current assignment

Incremental Flattening

$\varphi_{s k}$: Boolean part of φ
F : set of terms that are in the encoding
I : set of terms that are inconsistent with the current assignment

Incremental Flattening

- Idea: add 'easy' parts of the formula first
- Only add hard parts when needed
- φ_{f} only gets stronger - use an incremental SAT solver

Incomplete Assignments

- Hey: initially, we only have the skeleton!

How do we know what terms are inconsistent with the current assignment if the variables aren't even in φ_{f} ?

Incomplete Assignments

- Hey: initially, we only have the skeleton!

How do we know what terms are inconsistent with the current assignment if the variables aren't even in φ_{f} ?

- Solution: guess some values for the missing variables. If you guess right, it's good.

Incomplete Assignments

- Hey: initially, we only have the skeleton!

How do we know what terms are inconsistent with the current assignment if the variables aren't even in φ_{f} ?

- Solution: guess some values for the missing variables. If you guess right, it's good.
- Ideas:
- All zeros
- Sign extension for signed bit-vectors
- Try to propagate constants ($a=b+1$)

