Arrays

Chapter 7

Decision Procedures
An Algorithmic Point of View

D.Kroening O.Strichman Revision 1.0

© Introduction
@ Definition
@ Basic Operations
@ Syntax
@ Semantics
@ Example

© Arrays as Uninterpreted Functions

A Reduction Algorithm for Array Logic
(3) g y Log
@ Array Properties
@ A Reduction Algorithm

Decision Procedures — Arrays 2

Motivation

Arrays are an important data structure:

@ “Native” implementation in most processor architectures

o Offered by most programming languages

e O(1) index operation
E.g., all data structures in Minisat are based on arrays

@ Hardware: memories

Decision Procedures — Arrays 3

Formalization

@ Mapping from an index type to an element type

@ T7: index type
o Tg: element type

@ Ty = (Tr — Tg): array type
@ Assumption: there are relations
=;C(Tyr xTr) and =pC (Tg xTg)
The subscript is omitted if the type of the operands is clear.

@ The theories used to reason about the indices and the
elements are called index theory and element theory,
respectively.

Decision Procedures — Arrays 4

Basic Operations

Let a € Ty denote an array.

There are two basic operations on arrays:

@ Reading: ali] is the value of the element that has index i

@ Writing: the array a where element i has been replaced by ¢ is
denoted by a{i «— e}

Decision Procedures — Arrays 5

More About the Index Theory

What theory is suitable for the indices?

@ Index logic should permit existential and universal
quantification:

o “there exists an array element that is zero'
o "all elements of the array are greater than zero”

o Example: Presburger arithmetic, i.e., linear arithmetic over
integers with quantification

Decision Procedures — Arrays 6

More About the Index Theory

What theory is suitable for the indices?

@ Index logic should permit existential and universal
quantification:

o “there exists an array element that is zero'
o "all elements of the array are greater than zero”

o Example: Presburger arithmetic, i.e., linear arithmetic over
integers with quantification

n-dimensional arrays:
For n > 2, add T'a(n — 1) to the element type of T'4(n).

Decision Procedures — Arrays 6

A Very General Definition of Array Logic

Syntax defined by extending the syntactic rules for the index logic
and the element logic

atomy: atom in the index logic
atomp: atom in the element logic
termy: term in the index logic

termpg: term in the element logic

Decision Procedures — Arrays

Syntax

atom : atomy | atomg | —atom | atom A atom |
Y array-identifier. atom
terma : array-identifier | terma{termy «— termg}

termp : terma|termy]

Equality between arrays a; and ag: write as Vi. a1[i] = asli]

Decision Procedures — Arrays 8

Semantics

Main axiom:

Axiom (Read-over-write Axiom)

Va € Ty. Ve € Tp. Vi, j € 17.

e 0=
alj] : otherwise .

ofi — elli] = {

Decision Procedures — Arrays 9

Program Verification Example I

1
2
3
4
5
6
7
8
9

Decision Procedures — Arrays

a: array 0..99 of integer;
i: integer;

for i:=0 to 99 do
/* Vx € Ng. x <i— afz] =0 */
al[i] :=0;
/* Vx € Ng. x <i— az] =0 */
done;
/* Vo e Nog.x <99 — alz] =0 */

10

Program Verification Example 11

Main step of the correctness argument:
invariant in line 7 is maintained by the assignment in line 6

Verification condition:

(Vz € Ng. z < i — afz] =0)
A a =a{i— 0}
— (VzeNp. z<i— a[z]=0)

Decision Procedures — Arrays 11

Decidability

Q: Is this logic decidable?

Decision Procedures — Arrays 12

Decidability

Q: Is this logic decidable?

A: No, even if the combination of the index logic and the element
logic is decidable

Decision Procedures — Arrays 12

as Uninterpreted Functions

Fragment: no quantification over arrays

Decision Procedures — Arrays 13

as Uninterpreted Functions

Fragment: no quantification over arrays

Arrays are functions! (From indices to elements)

Decision Procedures — Arrays 13

as Uninterpreted Functions

Fragment: no quantification over arrays

Arrays are functions! (From indices to elements)

Idea: use procedures for uninterpreted functions!

Decision Procedures — Arrays 13

(i =3 nalj) = *2?) — ali] = *2

>z’: read as an integer number

Decision Procedures — Arrays 14

Example

(i=jAalj] = >2’) — ali] = =z’

>z’: read as an integer number

F,: uninterpreted function introduced for the array a:

(i=7NFyj)="2") — Fo(i) =2’

Decision Procedures — Arrays 14

Example

(i=7ANFuj)="2") — Fo(i) =2’

Apply Bryant's reduction:
(i=jANF=22")— F; =2’
where

* x fl Di=]
Fr =/ and FQ{ fa : otherwise

Prove this using a decision procedure for equality logic.

Decision Procedures — Arrays

15

7 Updates

What about a{i «— e}?

Decision Procedures — Arrays 16

Array Updates

What about a{i «— e}?

© Replace a{i «— e} by a fresh variable o’ of array type

@ Add two constraints:

a) a'[i] = e for the value that is written,
b) Vj #i. d'[j] = a[j] for the values that are unchanged.

Compare to the read-over-write axiom!

This is called the write rule.

Decision Procedures — Arrays 16

Array Updates: Example I

Transform
a{i — e}fi] > e

into:

Decision Procedures — Arrays 17

Array Updates: Example 11

Transform
al0] =10 — a{l «— 20}[0] = 10

into:

(a[0] = 10 Ad'[1] = 20 A (V] # 1. &'[4] = a[j])) — @'[0] = 10

Decision Procedures — Arrays 18

Array Updates: Example 11

Transform
al0] =10 — a{l «— 20}[0] = 10

into:

(a[0] = 10 Ad'[1] = 20 A (V] # 1. &'[4] = a[j])) — @'[0] = 10

and then replace a, o'

(Fa(0) = 10AF, (1) = 20A(Vj # 1. Fr(j) = Fu(j))) — Fu(0) = 10

Decision Procedures — Arrays 18

Array Updates: Example 11

Transform
al0] =10 — a{l «— 20}[0] = 10

into:

(a[0] = 10 Ad'[1] = 20 A (V] # 1. &'[4] = a[j])) — @'[0] = 10

and then replace a, o'

(Fa(0) = 10AF, (1) = 20A(Vj # 1. Fr(j) = Fu(j))) — Fu(0) = 10

Q: Is this decidable in general?
Say Presburger plus uninterpreted functions?

Decision Procedures — Arrays 18

Array Properties

Now: restricted class of array logic formulas in order to obtain
decidability.
We consider formulas that are Boolean combinations of array
properties.

Definition (array property)

A formula is an array property iff if it is of the form

Vil,...,ik e Ty. gf)[(il,...,ik) —>¢V(i1,...,’i/€),

and satisfies the following conditions:
© The predicate ¢y must be an index guard.

@ The index variables i1, ...,4; can only be used in array read
expressions of the form a[i;].

The predicate ¢y is called the value constraint.

Decision Procedures — Arrays 19

Index Guards

Definition (Index Guard)

A formula is an index guard iff if follows the grammar

iguard : iguard A iguard | iguard \V iguard |
iterm < iterm | iterm = iterm
iterm : ip| ... |ig | term
term : integer-constant|
integer-constant - index-identifier |

term 4+ term

The “index-identifier” used in “term” must not be one of
Uy ey Uk

Decision Procedures — Arrays 20

Array Properties: Example

The extensionality rule defines the equality of two arrays a; and as
as element-wise equality. Extensionality is an array property:

V1. al[i] = a [’L]

Decision Procedures — Arrays 21

Array Properties: Example

The extensionality rule defines the equality of two arrays a; and as
as element-wise equality. Extensionality is an array property:

V1. al[i] = a [’L]

How about the array update?
a' =a{i«— 0}

Is this an array property as well?

Decision Procedures — Arrays 21

Array Properties: Array Update

An array update expression can be replaced by adding two
constraints:

dlij=0 A Vj#i. d[j]=alj]

The first conjunct is obviously an array property.

Decision Procedures — Arrays 22

Array Properties: Array Update

An array update expression can be replaced by adding two
constraints:

dlij=0 A Vj#i. d[j]=alj]

The first conjunct is obviously an array property.

The second conjunct can be rewritten as

Vi (j<i—1Vi+1<j) — d[j] =alj]

Decision Procedures — Arrays 22

Algorithm

Input: Array property formula ¢4 in NNF
Output: Formula ¢ yr

@ Apply the write rule to remove all array updates from ¢ 4.

@ Replace all existential quantifications of the form
di € Ty. P(i) by P(j), where j is a fresh variable.

© Replace all universal quantifications of the form Vi € T7. P(i)

by
A\ PG).

1€Z(P)

@ Replace the array read operators by uninterpreted functions
and obtain ¢yp;

Q return ¢yp;

Decision Procedures — Arrays 23

The Set I

Z(¢) denotes the index expressions that ¢ might possibly be equal
to.

Theorem: This set contains the following elements:

@ All expressions used as an array index in ¢ that are not
quantified variables.

@ All expressions used inside index guards in ¢ that are not
quantified variables.

@ If ¢ contains none of the above, Z(¢) is {0} in order to obtain
a nonempty set of index expressions.

Decision Procedures — Arrays 24

Example

We prove validity of
(Vo € Ng. z < i — afz] =0)

A a =a{i— 0}
— (VzeNp. xz<i—a[z]=0).

That is, we check satisfiability of
(Ve € Ng. z < i — afz] =0)

A & =a{i— 0}
A (FzeNy. x<ina|z] #0).

Decision Procedures — Arrays 25

Example

Apply write rule:

(Vo € Ng. z < i — afz] =0)
i) = 0AYj #i. a/lj] = alj
(Fr e Ng. z <iNa[x] #0).

A

A

Instantiate existential quantifier with a new variable z € Ny:
(Ve € Ng. z < i — afz] =0)

A @il =0AV] #4. a[j] = alj]
AN z<iNa[z] #0).

Decision Procedures — Arrays 26

Example

The set 7 for our example is {7, z}.
Replace the two universal quantifications as follows:

(i<i—ali|=0)A(2<i— alz] =0)
A] =0A(1#i— ai] =ali]) A (z #i— a'[z] = alz])
AN z<iNa[z] #0).
Remove the trivially satisfied conjuncts to obtain
(z<i—alz] =0)

N ai]|=0A(z#1— &[z] = alz])
N z<iNa[z] #0).

Decision Procedures — Arrays 27

Example

Replace the arrays by uninterpreted functions:

(z<i— Fo(2) =0)
N Fu(i)=0A (2210 — Fu(2) = Fu(2))
AN z2<iNFuy(z)#0).

By distinguishing the three cases z < i, z =4, and z > 1, it is easy
to see that this formula is unsatisfiable.

Decision Procedures — Arrays 28

	Introduction
	Definition
	Basic Operations
	Syntax
	Semantics
	Example

	Arrays as Uninterpreted Functions
	A Reduction Algorithm for Array Logic
	Array Properties
	A Reduction Algorithm

