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Abstract.

The Nelson-Oppen combination procedure, which combines satisfiabil-
ity procedures for a class of first-order theories by propagation of equalities
between variables, is one of the most general combination methods in the
field of theory combination. We describe a new non-deterministic version of
the procedure that has been used to extend the Constraint Logic Program-
ming Scheme to unions of constraint theories. The correctness proof of the
procedure that we give in this paper not only constitutes a novel and easier
proof of Nelson and Oppen’s original results, but also shows that equality
sharing between the satisfiability procedures of the component theories, the
main idea of the method, can be confined to a restricted set of variables.

While working on the new correctness proof, we also found a new charac-
terization of the consistency of the union of first-order theories. We discuss
and give a proof of such characterization as well.

1. Introduction

Nelson and Oppen were among the first to provide a fairly general method
to combine logical theories and relative satisfiability procedures ([17]). Since
then, almost all the effort in the field of combination has been concentrated
on equational theories and unification algorithms ([2, 3, 5, 6, 7, 9, 10, 14,
19, 20, 21, 25, 28, 27]). Others have worked on combinations of more general
theories as well (see [15, 23, 24], for instance) but to date the Nelson-Oppen
method appears to be still one of the most general in the field.
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The need of extending the focus from unification to more general satis-
fiability problems is well felt in the combination literature after the emer-
gence and consolidation of several constraint-based computational paradigms
that operate on more general constraint domains than those described by
equational theories.

We have shown in [26] how the generality of the Nelson-Oppen method
allows us to easily incorporate a combination procedure based on that
method into a constraint-based computation framework, namely, the CLP
scheme of Jaffar and Lassez [11, 12, 13], with few modifications of the
scheme itself. In that work, we first describe a non-deterministic version of
the combination procedure originally devised by Nelson and Oppen. Then
we integrate the procedure into a modified version of the CLP scheme to
obtain a new scheme that operates with unions of constraint theories by
using constraint solvers for the single component theories.

For space limitations, we are not able to describe here the integration
in CLP nor prove that the main properties of CLP lift to the new scheme.
For this we refer the reader to [26]. Instead, in this paper, we describe
and discuss the combination procedure used in [26] and provide a novel
proof of Nelson and Oppen’s original results. In addition, we provide a
characterization of the consistency of the union of first-order theories.

1.1. NOTATION AND CONVENTIONS

In general, we will adhere to the notation and definitions given in [22]. The
most notable notational conventions followed are given below with the un-
derstanding that other notations that may appear in the paper follow the
common conventions of the field.

The letters v, z, y, z denote logical variables, ¢, 1 first order formulas,
and 9 a value assignment, or valuation, to a set of variables.

Some of the above symbols may be subscripted or have an over-tilde
which will represent a finite sequence. For instance, Z stands for a sequence
of the form (z1, 2s, ..., Z,) for some natural number n. When convenient,
we will use the tilde notation to denote just sets of symbols—as opposed
to sequences. The notation ¢(Z) is used to indicate that the free variables
of ¢ are ezactly the ones in Z. In general, var(yp) is the set of all the free
variables of ¢. The shorthand 3 ¢ stands for the existential closure of ¢.

Where M is a structure and ¢ a sentence, that is, a closed formula,
the notation M = ¢ means that M satisfies ¢ or, equivalently, that ¢ is
true in M. If ¢ is in general a formula and ¥ a valuation on M of ¢’s free
variables, if any, the notation M |= ¥ means that 9 satisfies ¢ in M.
Notice that, in analogy with substitutions, we write valuation applications
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in postfix form. For convenience, where ¥ is a valuation of &, we will also
indicate with 4 the reduction of 4 to ¢ if § C &, or an arbitrary expansion
ofittogif & C g.

We will generally identify first-order theories with the set of their the-
orems. We will also identify union of multi-sets of formulas with logical
conjunction.

1.2. ORGANIZATION OF THE PAPER

In Sect. 2, we first recall and briefly discuss the Nelson-Oppen method; then
we describe our non-deterministic version of their combination procedure.
In Sect. 3, we formalize the combination problem more rigorously and dis-
cuss the conditions under which union of theories are consistent. Then we
prove the correctness of the combination procedure introduced in Sect. 2.
We conclude in Sect. 4 with some remarks on the possible extension of the
procedure and give direction for further development.

2. The Nelson and Oppen Combination Method

In [17], Nelson and Oppen show how a satisfaction procedure for a theory
built by combining several first-order theories can be derived as a combi-
nation of the satisfaction procedures for each of these theories. The main
idea is to combine the satisfiability procedures by means of equality shar-
ing. We will clarify this in a moment, but first let us set the problem more
rigorously.

We say that a formula is in simple Conjunctive Normal Form if it
is a conjunction of literals. Consider n first-order theories with equality,
Ti, ..., Tn, with respective signatures ¥y, ..., %, . Assume that no two sig-
natures have any non-logical symbols in common.! For each theory, let
sCNF(T;) be the class of simple Conjunctive Normal Form formulas built
with the symbols of ;. Where ¥ := |J;,_; ,, ¥, let T the X-theory defined
as the (deductive closure of) the union of all the above theories and let
sCNF(T) be the class of sCNF X-formulas.

If for each 7; we have a procedure that decides the satisfiability in 7;
of formulas of sCNF(T;), we can easily derive a procedure that decides
the satisfiability in 7 of any formula of sCNF(T). Because of the possible
presence of “mixed” terms and predicates (that is, expressions built with
symbols from different signatures), ¢ cannot be processed directly by any of
the satisfiability procedures unless it is of the form ¢ Apa A.. . Ap,,—call it
separate form—where each sub-formula ¢; is a formula of some sCNF(T;).
If that is the case, we know that ¢ is unsatisfiable in T if and only if

!Where we treat the equality symbol “=" as a logical constant.
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any ¢; is. Now, if ¢; € sCNF(T;) say, by construction it is unsatisfiable
in T exactly when it is unsatisfiable in 7; and so we can use directly the
satisfiability procedure for sCNF(T;) to verify the unsatisfiability of ¢.

If ¢ is not already in separate form, we can apply a conversion pro-
cedure that, given ¢, returns an equivalent separate form. The separation
procedure (and its correctness proof) is straightforward but to describe it
we need some definitions and notation first. We have adapted these from
those in [2], among others, which appear to be well established in the field.

Consider the theories described above. For ¢ = 1,...,n, a member of
Y; is an i-symbol. A Y-term t is an i-term if it is a variable or it has the
form f§ and f is an i-symbol. An i-predicate is defined analogously. A
sub-term of an i-term ¢ is an alien sub-term of ¢ if it is a j-term, with
j # i, and all of its super-terms in ¢ are i-terms. An i-term is pure (or
also, ¢-pure) if it only contains i-symbols. Analogously we can define alien
predicate arguments. An i-predicate (including equations) is pure if all of
its arguments are i-terms. Pure formulas are defined as obvious. Observe
that, given our assumption on the various signatures, a variable is an i-
term for any 7 and so an equation is always pure if one of its members is a
variable and the other is a pure term.

The separation procedure consists of the following steps. Consider a
formula ¢ € sCNF(T) and see it as a multi-set of literals.

1. Variable Abstraction
In ¢, recursively replace each alien predicate argument or sub-term ¢
with a newly generated variable z and add the equation z = ¢ to ¢.
Purify each equations of the form ¢; = ¢, where neither of ¢; and ¢,
is a variable, by replacing it with the equations z = t1,z = t5 (where
z is a new variable) and purifying ¢; and ¢, in turn.

2. Partition
Partition the new multi-set in m < n blocks containing only i-pure
literals.?

The resulting partition can be seen as a sSCNF formula of the form ¢; A
-+ A\ ¢m where each p; is a j-pure sCNF formula for some j € {1,...,n}.

A formula may have many separate forms, but they are all equivalent
modulo variable renaming and the standard properties of logical conjunc-
tion and equality, hence it is appropriate to speak of the separate form of
a formula. We indicate the separate form of a formula ¢ € sCNF(T) with
¢. For notational convenience, we will always think of ¢ as a conjunction
of the form ¢; A --- A ¢,, with n being the number of component theo-
ries, where for each ¢ € {1,...,n}, ; is an i-pure sCNF formula, even if

?Equations between variables are partitioned arbitrarily.
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¢ may not contain any i-symbol for some . In that case, ¢; is defined as
the identically true formula—which can be thought of as belonging to all
sCNF(T;)’s.

It is immediate that any ¢ € sCNF(T) is logically equivalent to 3% ¢
where Z is the set of new variables introduced by the separation procedure.
This entails the following

Proposition 2.1 A sCNF formula is satisfiable iff its separate form is.

Clearly, the problem with deciding the satisfiability of a formula ¢ by
analyzing its separate form is that, in general, each sub-formula ¢; could be
singly satisfiable without their conjunction being satisfiable. Therefore, to
be able to apply distinct satisfiability procedures to each ¢; and correctly
decide the satisfiability of ¢ we need to establish some sort of communi-
cation between the various procedures. In the Nelson-Oppen method, such
communication is achieved by propagating from one procedure to the others
any implied equalities between the variables of .

Actually, the method is a little more complex because, in general, it is
possible that at a certain step, not one, but a proper disjunction of variable
equalities is implied and so reasoning by cases becomes necessary. Such
complication does not arise though if the component theories are convez,
that is, such that their formulas never imply proper splits3.

The issue of theory convexity is important to assessing the time and
space complexity of a combination procedure based on the above method
because of the case reasoning required with non-convex theories. Compu-
tational complexities issues related to the implementation of the Nelson-
Oppen method have been extensively investigated in [18] and we refer the
reader to that work. We will ignore those issues here by considering a non-
deterministic combination procedure that we have adapted from those in
[18] itself and [2] and which applies to convex as well as non-convex theories.
Essentially, instead of propagating variable equalities back and forth and
having to reason by cases when splits are implied, the non-deterministic
procedure guesses in advance all the equalities that hold between the vari-
ables of the input formula.

We describe our version of the procedure in the next section where we
consider only the simple case of two component theories, the general case
being an easy generalization.

3A split of a formula ¢ is a disjunction of variable equalities which is implied by ¢
and is such that none of its proper sub-formulas are implied by ¢. A proper split is a
split with at least two disjuncts.
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2.1. THE COMBINATION PROCEDURE

If P is any partition on a set S of words and R is the corresponding equiv-
alence relation, we call the arrangement of S given by P the set

ar(S) = {e=y|z,y€ Sand zRy}U{z #y|z,y € S and not zRy}

containing, modulo reflexivity and symmetry of “=", all the equations

between any two equivalent words and all the disequations between any
two non-equivalent words of S. For instance, if S := {zo, 21, 22, 23} and

P = {{mo,mlamZ}:{m?’}}:
ar(S) = {zo = @1, To = T3, T1 = T3, To F T3, T1 F T3, Ty F T3}

In the following, we will make use of arrangements over sets of variables.
Since, where % is a set of variables, ar(Z) is a set of formulas, we will also
treat it when convenient as the conjunction of all its equations and dise-
quations.

Given two theories 71 and Ty, for 2 = 1, 2, we assume the availability of
a procedures, Sat;, that decides the satisfiability in 7; for the formulas in
sCNF(T;).

The combination procedure given below decides the satisfiability in
the union of 7; and 73 in two phases. In the first phase, which is non-
deterministic, two i-pure formulas (11, 12) are generated from the input
formula®*. In the second phase, each 1; is tested for satisfiability in 7;. The
combination procedure succeeds when both 1);’s are satisfiable and fails
otherwise.

More specifically, let L be the (multi)set of literals of the input formula.
The procedure is composed of the following steps:

— Decomposition Phase

1. For : = 1,2, let L; be the i-pure part of L’s separate form.

2. Where & is the set of all variables shared by some literal in L
and some in Ly, choose an arrangement ar(Z).

3. Pass the pair (L; U ar(&), Ly U ar(&)) to the next phase.
— Check Phase

1. Run Sat; on L; Uar(Z).

2. Run Sat; on Ly U ar(Z).

*This phase corresponds to the decomposition algorithm of Baader and Schulz (see,

[3] or [4]).
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3. Succeed if both Sat; and Sats succeed. Fail if either of Sat; or
Saty fails.

Observe that, the choice of an arrangement corresponds to the variable
identification step of most combination methods ([2, 4, 7, 14, 19]) and to
the equality propagation mechanism of the original Nelson-Oppen proce-
dure. In our case though, variable identification is only performed on the
shared variables of the two i-pure halves of the input instead of on all of
them. That this is enough is also recognized in [3], for a similar combina-
tion method over structures, on the basis of model-theoretic justifications
analogous to the ones we give later.

This combination procedure is provably sound and complete for a re-
stricted class of first-order theories. In addition, it is allows incremental
implementations when incremental satisfiability procedures for the com-
ponent theories are available. A simple incremental implementation is the
following.

Let L be any permutation of the literals in the separate form of the input
formula. We feed the two satisfiability procedures by picking one literal at
a time from L and passing it to Sat; or Saty according to whether it is a
1-literal or a 2-literal. In addition, if the literal shares some variables ¥ with
the literals already passed to the other satisfiability procedure, we choose
some ar(?) and pass it to both procedures.’

It is an incremental version of the combination procedure that it is
actually used in [26] to extend the CLP scheme.

Finally, notice that, although we have restricted our attention to sCNF
formulas, the above procedure can also be used to decide the satisfiability of
quantifier-free formulas in general, since a quantifier-free formula is satisfi-
able iff some disjunct—which is in turn a sSCNF formula—of its disjunctive
normal form is satisfiable.

3. Correctness of the Combination Procedure

All the theories we consider in the following are first-order theories incor-
porating the theory of equality. For convenience, we will follow the common
convention that considers the theory of equality as an integral part of the
logical machinery of First Order Predicate Logic and so, from now on, when
we say “theory” we will mean an theory in FOPL with equality.

Earlier, we defined the combination, or union, of two or more theories
as the deductive closure of the union of the component theories. In the fol-

51t should be obvious that since implementations are necessarily deterministic, some
sort of backtracking mechanism is required in this case to recover from wrong choices of
arrangements.
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lowing, where T; and T, are two theories, we will denote their combination
simply as T U 7.

3.1. CONSISTENT UNIONS OF THEORIES

Before proving the correctness of the combination procedure, we make a
brief digression on the combination of theories that will later justify some
of the restrictions to the application of the procedure.

Combining theories is, in general, a non-trivial operation because most
of the model and proof-theoretic properties of theories are not modular,
including the most important one: consistency. Some papers in the com-
bination literature do provide a proof of consistency for their combined
theories, or structures, but their proofs are often ad hoc. Others (including
Nelson and Oppen’s) seem to ignore the issue by either assuming consis-
tency or giving it for granted in their case.

Craig and Robinson have identified a while ago a local criterion for the
consistency of combined theories which justifies the choice of signature-
disjoint component theories if some conditions on the cardinality of the
theories’ models are met.

We formalize this in the following theorem by giving a necessary and suf-
ficient condition for combining signature-disjoint theories meaningfully. The
theorem and its following extension to the general case of non-signature-
disjoint theories essentially subsume all previous similar results in the lit-
erature.

In our proofs, we will use the class of formulas defined below.

Definition 3.1 A first order formula is called an equational formula iff all
its atomic sub-formulas are equalities between variables.®

Proposition 3.1 Let T; and Ty be two theories. Assume that they are con-
sistent and their respective signatures, 31 and Xy, are disjoint. Then, their
union is consistent iff there is a cardinal k such that both T; and Ty have a
model of cardinality k.

Proof: (=) Let T := T; U T, and consider any M € Mod(T)—where
Mod(T) # 0 as T is consistent by assumption. By construction of T, the
reduct of M to X; is a model of T;, for ¢ = 1,2. Obviously, both reducts
have the same cardinality.

(<) Let M; and M, be models of 7; and T, respectively, and assume
they have the same cardinality. By the Craig-Robinson Theorem (see [22]),
T is inconsistent iff there is a sentence ¢, whose non-logical symbols are in
31 N Xy, such that 71 = ¢ and Ty = —e. If such @ exists, we have that

MiEp and My E . (1)

6Nelson-Oppen call such formulas simple formulas.
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Now, as 71 and 75 are signature-disjoint, ¢ can only be an equational for-
mula. It is a well-known result of Model Theory that the reducts of any
two structures to the the language of equational formulas are isomorphic
whenever they have the same cardinality”. This means that either both M;
and M3 model ¢ or neither of them does, which contradicts (1). O

The above proof immediately suggests an extension of the previous re-
sult to the combination of any two consistent theories.?

Proposition 3.2 Let T; and T3 be two consistent theories with respective
signatures 1 and Xy. Their union is consistent iff there is a model My of
Ti and a model My of Ty such that their reducts to 31 NXy are isomorphic.

Proof. Analogous to that of Prop. 3.1. O

A well-known general result on the union of theories is Robinson’s Con-
sistency Theorem (see [8], for instance). This theorem, however, provides
only a sufficient condition for the consistency of the union theory and a
somewhat stronger one: 71 U 73 is consistent if 71 N 7y is a complete theory
for the language of (£, N ¥y)-sentences.

In our terms, this condition is expressed as follows: for every model M
of one theory there is a model M’ of the other such that the reducts of
M and M’ to ¥ are elementarily equivalent®. Now, elementary equivalence
between structures is a strictly more general relation than isomorphism. In
some sense, however, our consistency result can be seen as more general
than Robinson’s for requiring the existence of just one pair of structures,
related through the isomorphism of their (£; N Xy)-reducts, as opposed to
an infinite number of them, related through the elementary equivalence of
their (X; N Xjy)-reducts.

In general, the conditions of Prop. 3.2 on the models of the component
theories are not so easy to verify. With signature-disjoint theories, however,
some cases are immediate. For instance, a consequence of Prop. 3.1, to
which we will appeal later, is that the combination of signature-disjoint
theories admitting infinite models is always safe.

Corollary 3.3 Let T; and Ty be as in Prop. 3.1 but such that they both
admit an infinite model. Then, their union is consistent.

"In other words, the theory of equational formulas is k-categorical for any cardinal &
(see, [22]).

8This extension was also independently obtained by Franz Baader ([1]) as a general-
ization of our Prop. 3.1.

®Recall that two X-structures are elementarily equivalent iff they satisfy exactly the
same Y-sentences and that a theory is complete exactly when every two models of it are
elementarily equivalent.



10 CESARE TINELLI AND MEHDI HARANDI

Proof: Immediate consequence of the fact that, by the Léwenheim-Skolem-
Tarski Theorem (see [8]), if each 7; admits an infinite model then it admits
infinite models of any cardinality ( > the cardinality of its signature). O
In the field of equational theories!® consistency in the general sense is
not an issue since all equational theories admit trivial models. A stronger
version of consistency is then used, let us call it F-consistency here: an
equational theory is E-consistent iff it admits models of cardinality greater
than 1. Franz Baader has shown in [1] that a well-known result in Uni-
fication Theory (see [20, 21]) is easily derivable as a consequence of Cor.
3.3.

Corollary 3.4 Let & and &, be two signature-disjoint equational theories.
If & and &5 are E-consistent, then their union is E-consistent as well.

Proof. For i = 1,2, let F; be a presentation of & and consider the set
F; == E;U{3 (z # y)}. Observe that, since &; is E-consistent by assumption,
E; admits infinite models'! and clearly so does F;. By Cor. 3.3 then F} UF,
admits at least one model; moreover, since it entails 3 (z # y), it only
admits non-trivial models. The claim follows by monotonicity observing
that & U &, is included in F; U Fy. O

3.2. SOUNDNESS AND COMPLETENESS RESULTS

We are now ready to prove the correctness of the combination procedure.
We start with a rigorous definition of the notions that we have been using
informally in the previous section.

Definition 3.2 Consider a X-theory T. We say a that a formula @ is sat-
isfiable in T iff it is satisfiable in some model of T, that is, iff there exists
a model M € Mod(T) such that M |= 3 ¢.

This definition is the dual of the standard definition of unsatisfiability
for formulas (as opposed to sentences) when we follow the convention of
considering free variables as implicitly universally quantified.

Recall that we apply the combination procedure to signature-disjoint
theories. Prop. 3.1 provides a condition on the component theories, namely
that there is a model for one theory and a model for the other which have
the same cardinality, that guarantees the consistency of their union and,
as a consequence, that the satisfiability problem in it is not trivial. Unfor-
tunately, that conditions alone is not sufficient for the correctness of the

1Recall that an equational theory is a first order theory admitting an axiomatization,
or presentation, all of whose axioms are universally quantified equations.
"1For instance, the free algebras in countably many generators.
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combination procedure. Problems might arise with theories that admit only
finite models. We explain this point with the help of an example.

Ezample. Consider a theory 7; admitting models of cardinality at most
2 and a signature-disjoint theory T, admitting models of any cardinality.
Assume that f is a functor of 71, g a functor of 75 and neither of them is
defined as a constant function in its respective theory'2. The union 7 of T;
and 7, is consistent by the Prop. 3.1, so consider the input formula

o = feFfyngzF#gzhgy# gz

The procedure splits ¢ into

Ly :={fz # fy} and L,:= {gz # gz,9y # gz}.

Observe that only possible arrangements of the variables shared between
L, and L, are {z = y} and {z # y}.

Now, L; U {& = y} is clearly unsatisfiable and so the procedure fails
on that arrangement. With the other arrangement however, both L;’s are
satisfiable in their respective theories and so the procedure concludes that
 is satisfiable in T. Unfortunately,

T E e (eFyreFzAy+#z)

which means that ¢ is unsatisfiable in 7 because, as 71, 7 only has models
of cardinality less than 3.

It is an easy consequence of the Léwenheim-Skolem-Tarski Theorem
that cases like the above do not appear if we only consider formulas that
are satisfiable in infinite models. Hence, we will restrict our attention to
the class of theories in which formulas are satisfiable if and only if they are
satisfiable in an infinite model and prove that for this class the combination
procedure is sound and complete.

Definition 3.3 (Stable-infiniteness [18]) A consistent, quantifier free
theory T with signature ¥ is called stably-infinite iff any quantifier-free
Y -formula is satisfiable in T iff it is satisfiable in an infinite model of T .

It follows from the above definition that every stably infinite theory
admits at least one infinite model.!2

12That is, T1 £ Vz,y fz = fy and similarly for g.

3We would like to point out that just having infinite models, although necessary, is
not sufficient for stable-infiniteness. Consider the theory {p(z) — z = y}; the theory
admits infinite models but the quantifier-free formula p(z) is only satisfiable in the trivial
models of the theory.
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In the following, we will indicate with A(&) the quantifier-free formula
obtained as the conjunction of all possible disequalities (modulo symmetry)
between distinct variables of Z. For instance, if & is {z1, 23, 23}, then A(Z)
is #1 # ¢a N1 # 3 A2y # 3. Recalling the definition of arrangement, it is
immediate that A(Z) is the arrangement generated by the discrete partition
of &.

We start with some lemmas involving equational formulas.

Lemma 3.5 Consider a theory £ over the language of equational formulas.
If a closed equational formula v is valid in an infinite model of €, then it
is valid in every infinite model of €.

Proof. Again, immediate consequence of the Upward Léwenheim-Skolem-
Tarski theorem (see [8]), since, as we saw earlier, all the models of £ with
the same cardinality are isomorphic. O

Lemma 3.6 Consider a theory £ as above. Assume that an equational for-
mula ¢ with free variables & is satisfied in a model M of £ by an assignment
9 of different individuals to each variable in &. Then i is satisfied in M
by any assignment of different individuals to each variable in Z.

FEquivalently, for all M € Mod(£),
if M = 3& (A(Z) Atp) then M = VE (A(Z) — 7).
Proof: It can be shown'* that 1) is equivalent to a formula of the form

V (@i A @i)

i€l

where each ¢; is a sentence and 1); is an arrangement of . If M |
(A(&) A )9 for some model M € Mod(€) and assignment 9, there ex-
ists an ¢ € I such that M | (¢; A ¢;)9. Since ¥ also satisfies A(Z), v
cannot contain any equality and so must be equal to A(&). The claim fol-
lows immediately from the fact that ¢; is closed and so satisfied in M by
any assignment. O

The proof of the theorem below is based on the following corollary (see
[22]) of the above mentioned consistency result by Craig and Robinson.

Lemma 3.7 (Craig Interpolation Lemma) If T U Ty, E @1 — 2,
where for i = 1,2, ; is a formula in the language of T;, there exists a
formula 1, whose free variables are among the free variables shared by ¢,

and @, such that T1 = o1 — ¥ and Ty = ¢ — ¢,.

14See Lemmas 1.5.6 and 1.5.7 of [8], for instance.
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We are now ready for the main result of this section.

Proposition 3.8 Let T; and Ty be two stably-infinite, signature-disjoint
theories and let v, € sCNF(T;) and ¢y € sCNF(T3). Let © be the set of
variables shared by p1 and ps. If p; A A(D) is satisfiable in T; for i=1,2,
then ©1 A s 18 satisfiable in T{ U Ts.

Proof: Ad absurdum, assume that 1 A @9 is unsatisfiable in 7 := T; U 73,
then T = @1 — —p,. By the lemma above, there exists a formula 9, whose
free variables # are in ¥, such that 71 = @1 — ¢ and T = @3 — . Again,
since T; and T, are signature disjoint, 1) must be an equational formula.
Now, T; is stably infinite and ¢; A A(Z) is satisfiable in 77, therefore it is
satisfiable in an infinite model M of 77 and so is 1 A A(Z).

Observe that since 7; contains &y, the theory of equality, M is a model
of & as well. By Lemma 3.6, it follows that V& (A(Z) — %) is valid in
M. By Lemma 3.5, it follows that V& (A(Z) — 1) is valid in every infinite
model of &.

In the same way, we can show that V& (A(Z) — —%) is valid in every
infinite model of &, which leads to a contradiction. O

In the above proposition, we assumed that the two ¢;’s are satisfied by
an assignment of a different individual to each of their shared variables. The
following corollary shows that there is no loss of generality in considering
only such assignments since we can always eliminate, by identification, those
shared variables that would be assigned to the same individual.

Corollary 3.9 Consider p1 and ¢y as above and let ar(%) be an arrange-
ment of their shared variables. If p; A\ ar(¥) is satisfiable in T; for i =1,2,
then ©1 A s 18 satisfiable in T{ U Ts.

Proof. Assume that ¢; has the form ¢;(?, ;) where Z; are the non shared
variables of ;. Given the equivalence relation that generates ar(?), we
choose an identification of the elements of #, that is, a substitution o from
¥ to ¥ that substitutes each variable in a same equivalence class with a
given representative for that class. Now, let @ := oo

Clearly, (¢;(9, Z;) Nar(?))o is still satisfiable in 7;. Observe however that
@;o has now the form ;(4, ;) and ar(?)o is actually (equivalent to) A(@).
By Prop. 3.8 then, @1 (@, Z1) A @a(i, Z2) is satisfiable in 7; U T3 and hence
01(7, 21) A pa(?, Z2) A ar(D) is satisfiable in T; U Ty as well. O

We can now prove the correctness of the combination procedure for the
union T of two signature-disjoint, stably-infinite theories, 7; and 7s.

Proposition 3.10 (Soundness) If one of the of the pairs (1, 1) output
by the decomposition phase of the combination procedure is such that v; is
satisfiable in T; for i — 1,2, then the input formula is satisfiable in T .
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Proof- We have already seen that Step 1 of the decomposition phase pre-
serves satisfiability. The claim then is an immediate consequence of Cor.
3.9.0

Proposition 3.11 (Completeness) If a formula ¢ € sCNF(T) is satis-
fiable in T, then there exists an output pair (¢1,v2) of the decomposition
phase such that 1; is satisfiable in T; for i — 1, 2.

Proof: Assume ¢ is satisfiable in a model M of T, then ¢ := ;1 A ¢, is sat-
isfiable in M for some valuation 9. This valuation induces an arrangement
ar(9) on the set ¥ of shared variables between ¢; and s, where for any
z,y €9, (zx=1y) € ar(?d) if ¥ = y9 and (¢ # y) € ar(?) otherwise.

Clearly, we have that M [ (ar(9) A ¢1 A @2)9, which implies that
M = (ar(9) A p1)9 and M = (ar(9) A p2)9. Since, for i = 1,2, the reduct
of M to the signature of 7; is a model of 7;, we have that ar(9) A p; is
satisfiable in 7;.

The claim follows from the fact that (1 A ar(?), g2 A ar(?)) is indeed a
possible output pair of the decomposition procedure. O

Notice that for the results above we need neither to postulate that
the satisfiability problem is decidable in the component theories nor that
the theories are axiomatizable. When satisfiability is in fact decidable, we
obtain the stronger correctness result below.

Corollary 3.12 Assume that for i = 1,2, Sat; is a decision procedure
for the satisfiability in T; of formulas of sSCNF(T;). Then, a formula ¢ €
sCNF(T) is satisfiable in T if and only if the combination procedure suc-
ceeds on .

Proof: Immediate consequence of Propositions 3.10 and 3.11 and the easily
proved fact that the procedure halts on every input whenever both Sat,
and Sat, do.

4. Conclusions and Further Developments

In this paper we have described a non-deterministic version of the Nelson-
Oppen combination procedure and given a novel proof of Nelson and Op-
pens’ original results.

We believe that our proof is relevant for at least two reasons. First, it
avoids the problematic concept of residue of a formula, introduced in Nelson
and Oppen’s proofs, which is only defined for infinite interpretations of the
formula itself.!> Second, it shows that equality propagation between the

15Tt looks like the authors had not realized this initially. As a matter of fact, the proofs
given in [17] were incorrect. In later papers on the methods, [18] and [16], the problem
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satisfiability procedures of the component theories, the main idea of the
method, can be confined to a restricted set of variables.

Another contribution of the paper was a characterization of the consis-
tency of the union of first-order theories.

In an attempt to extend the combination procedure to more general
cases, we are confronted with two issues, among others, that we believe are
very significant and should deserve further investigation.

The first issue is the stable-infiniteness requirement on the component
theories. There certainly are interesting constraint theories that are not
stably-infinite!®. We have seen in Sect. 3.2 what kind of problems can arise
if one of the component theories is not stably infinite, in particular if it only
admits finite models. Stable-infiniteness does not seem to be a necessary
condition for the correctness of the combination procedure although it is
the most general sufficient condition identified so far. We conjecture that
there might exist weaker requirements on the component theories which are
sufficient for the procedure’s correctness in the case of signature-disjoint
theories and quantifier-free input formulas.

The second issue is the disjointness requirement on the signatures of
the component theories. The procedure can be easily extended to the case
of component theories with signatures sharing only constant symbols!'”;
unfortunately, the correctness proof reported here does not lift to this ex-
tension because—like Nelson and Oppen’s— it is based on the exclusive
model-theoretic properties of equational formulas. We have found, however,
a simple constructive proof of Prop. 3.2 that leads naturally to a construc-
tive proof of an analogous to Prop. 3.8 for the case of component theories
whose signatures share a finite number of constants. The case of shared
function symbols is, understandably, much harder because of the infinite
number of terms that are then shared by the languages of the component
theories. We are currently trying to identify further model-theoretic re-
strictions on the component theories, beside stable infiniteness, that might
lead to some controlled form of term sharing and therefore suggest further
extensions of the procedure.

was side-stepped by restricting attention to infinite models only and implicitly claiming
that such restriction did not invalidate the generality of the results. This is indeed true
but not totally immediate.

'8With theories of finite domains being the most prominent examples, of course.

17In essence, this can be done by including the shared constants in the computation of
arrangements.
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