Errata For 2nd Edition

Chapter 4

- p. $83, \mathrm{Eq}(4.5)$ should be:

$$
i n 0 _a=i n 0 _b \wedge \varphi_{a}^{U F} \wedge \varphi_{b}^{U F} \Rightarrow \text { out } 2 _a=\text { out } 0 _b
$$

- Algorithm 4.3.1 on page 85, at the end of step 1.(a) it should read "All other terms form singleton equivalence classes" (rather than variables).

Chapter 6

- p. 145 , Eq. (6.46) should be:

$$
\langle a\rangle_{S}<\langle b\rangle_{S} \quad \Longleftrightarrow \quad\left(a_{l-1} \Longleftrightarrow b_{l-1}\right) \oplus a d d(a, \sim b, 1) . \text { cout } .
$$

Chapter 7

- (7.19), (7.20) are not strictly according to the definition of array properties, and in particular we used $<i$ as a 'syntactic sugar' substitute for $<=i-1$, and likewise $j!=i$ for $j<=i-1 \vee i+1<=j$. Rewriting the equations without those shorthand notations we get:

$$
\begin{align*}
& \left(\forall x \in \mathbb{N}_{0} \cdot x \leq i-1 \rightarrow \mathrm{a}[x]=0\right) \\
\wedge & \mathrm{a}^{\prime}[i]=0 \wedge \forall j .\left((j \leq i-1 \vee i+1 \leq j) \rightarrow \mathrm{a}^{\prime}[j]=\mathrm{a}[j]\right) \tag{1}\\
\wedge & z \leq i \wedge \mathrm{a}^{\prime}[z] \neq 0 .
\end{align*}
$$

The set \mathcal{I} for our example is $\{i, z\}$. We therefore replace the two universal quantifications as follows:

$$
\begin{array}{ll}
& (i \leq i-1 \rightarrow \mathrm{a}[i]=0) \wedge(z \leq i-1 \rightarrow \mathrm{a}[z]=0) \\
\wedge & \mathrm{a}^{\prime}[i]=0 \\
\wedge & \left((i \leq i-1 \vee i+1 \leq i) \rightarrow \mathrm{a}^{\prime}[i]=\mathrm{a}[i]\right) \tag{2}\\
\wedge & \left((z \leq i-1 \vee i+1 \leq z) \rightarrow \mathrm{a}^{\prime}[z]=\mathrm{a}[z]\right) \\
\wedge & z \leq i \wedge \mathrm{a}^{\prime}[z] \neq 0
\end{array}
$$

Let us remove the trivially satisfied conjuncts to obtain

$$
\begin{array}{ll}
& (z \leq i-1 \rightarrow \mathrm{a}[z]=0) \\
\wedge & \mathrm{a}^{\prime}[i]=0 \wedge\left((z \leq i-1 \vee i+1 \leq z) \rightarrow \mathrm{a}^{\prime}[z]=\mathrm{a}[z]\right) \tag{3}\\
\wedge & z \leq i \wedge \mathrm{a}^{\prime}[z] \neq 0
\end{array}
$$

We now replace the two arrays a and a^{\prime} by uninterpreted functions F_{a} and $F_{a^{\prime}}$ and obtain

$$
\begin{array}{ll}
& \left(z \leq i-1 \rightarrow F_{a}(z)=0\right) \\
\wedge & F_{a^{\prime}}(i)=0 \wedge\left((z \leq i-1 \vee i+1 \leq z) \rightarrow F_{a^{\prime}}(z)=F_{a}(z)\right) \tag{4}\\
\wedge & z \leq i \wedge F_{a^{\prime}}(z) \neq 0 .
\end{array}
$$

